scholarly journals Characterizing Arctic sea ice topography using high-resolution IceBridge data

2016 ◽  
Vol 10 (3) ◽  
pp. 1161-1179 ◽  
Author(s):  
Alek A. Petty ◽  
Michel C. Tsamados ◽  
Nathan T. Kurtz ◽  
Sinead L. Farrell ◽  
Thomas Newman ◽  
...  

Abstract. We present an analysis of Arctic sea ice topography using high-resolution, three-dimensional surface elevation data from the Airborne Topographic Mapper, flown as part of NASA's Operation IceBridge mission. Surface features in the sea ice cover are detected using a newly developed surface feature picking algorithm. We derive information regarding the height, volume and geometry of surface features from 2009 to 2014 within the Beaufort/Chukchi and Central Arctic regions. The results are delineated by ice type to estimate the topographic variability across first-year and multi-year ice regimes. The results demonstrate that Arctic sea ice topography exhibits significant spatial variability, mainly driven by the increased surface feature height and volume (per unit area) of the multi-year ice that dominates the Central Arctic region. The multi-year ice topography exhibits greater interannual variability compared to the first-year ice regimes, which dominates the total ice topography variability across both regions. The ice topography also shows a clear coastal dependency, with the feature height and volume increasing as a function of proximity to the nearest coastline, especially north of Greenland and the Canadian Archipelago. A strong correlation between ice topography and ice thickness (from the IceBridge sea ice product) is found, using a square-root relationship. The results allude to the importance of ice deformation variability in the total sea ice mass balance, and provide crucial information regarding the tail of the ice thickness distribution across the western Arctic. Future research priorities associated with this new data set are presented and discussed, especially in relation to calculations of atmospheric form drag.

2015 ◽  
Vol 9 (6) ◽  
pp. 6495-6543
Author(s):  
A. A. Petty ◽  
M. C. Tsamados ◽  
N. T. Kurtz ◽  
S. L. Farrell ◽  
T. Newman ◽  
...  

Abstract. We present an analysis of Arctic sea ice topography using high resolution, three-dimensional, surface elevation data from the Airborne Topographic Mapper, flown as part of NASA's Operation IceBridge mission. Surface features in the sea ice cover are detected using a newly developed surface feature picking algorithm. We derive information regarding the height, volume and geometry of surface features from 2009–2014 within the Beaufort/Chukchi and Central Arctic regions. The results are delineated by ice type to estimate the topographic variability across first-year and multi-year ice regimes. The results demonstrate that Arctic sea ice topography exhibits significant spatial variability, mainly driven by the increased surface feature height and volume (per unit area) of the multi-year ice that dominates the Central Arctic region. The multi-year ice topography exhibits greater interannual variability compared to the first-year ice regimes, which dominates the total ice topography variability across both regions. The ice topography also shows a clear coastal dependency, with the feature height and volume increasing as a function of proximity to the nearest coastline, especially north of Greenland and the Canadian Archipelago. A strong correlation between ice topography and ice thickness (from the IceBridge sea ice product) is found, using a square-root relationship. The results allude to the importance of ice deformation variability in the total sea ice mass balance, and provide crucial information regarding the tail of the ice thickness distribution across the western Arctic. Future research priorities associated with this new dataset are presented and discussed, especially in relation to calculations of atmospheric form drag.


2001 ◽  
Vol 33 ◽  
pp. 225-229 ◽  
Author(s):  
R.W. Lindsay

AbstractThe RADARSAT geophysical processor system (RGPS) uses sequential synthetic aperture radar images of Arctic sea ice taken every 3 days to track a large set of Lagrangian points over the winter and spring seasons. The points are the vertices of cells, which are initially square and 10 km on a side, and the changes in the area of these cells due to opening and closing of the ice are used to estimate the fractional area of a set of first-year ice categories. The thickness of each category is estimated by the RGPS from an empirical relationship between ice thickness and the freezing degree-days since the formation of the ice. With a parameterization of the albedo based on the ice thickness, the albedo may be estimated from the first-year ice distribution. We compute the albedo for the first spring processed by the RGPS, the early spring of 1997. The data include most of the Beaufort and Chukchi Seas. We find that the mean albedo is 0.79 with a standard deviation of 0.04, with lower albedo values near the edge of the perennial ice zone. The biggest source of error is likely the assumed rate of snow accumulation on new ice.


2013 ◽  
Vol 7 (1) ◽  
pp. 245-265 ◽  
Author(s):  
V. A. Alexeev ◽  
V. V. Ivanov ◽  
R. Kwok ◽  
L. H. Smedsrud

Abstract. Long-term thinning of arctic sea ice over the last few decades has resulted in significant declines in the coverage of thick multi-year ice accompanied by a proportional increase in thinner first-year ice. This change is often attributed to changes in the arctic atmosphere, both in composition and large-scale circulation, and greater inflow of warmer Pacific water through the Bering Strait. The Atlantic Water (AW) entering the Arctic through Fram Strait has often been considered less important because of strong stratification in the Arctic Ocean and the deeper location of AW compared to Pacific water. In our combined examination of oceanographic measurements and satellite observations of ice concentration and thickness, we find evidence that AW has a direct impact on the thinning of arctic sea ice downstream of Svalbard Archipelago. The affected area extends as far as Severnaya Zemlya Archipelago. The imprints of AW appear as local minima in sea ice thickness; ice thickness is significantly less than that expected of first-year ice. Our lower-end conservative estimates indicate that the recent AW warming episode could have contributed up to 150–200 km3 of sea ice melt per year, which would constitute about 20% of the total 900 km3yr−1 negative trend in sea ice volume since 2004.


2020 ◽  
Author(s):  
Torben Koenigk ◽  
Evelien Dekker

<p>In this study, we compare the sea ice in ensembles of historical and future simulations with EC-Earth3-Veg to the sea ice of the NSIDC and OSA-SAF satellite data sets. The EC-Earth3-Veg Arctic sea ice extent generally matches well to the observational data sets, and the trend over 1980-2014 is captured correctly. Interestingly, the summer Arctic sea ice area minimum occurs already in August in the model. Mainly east of Greenland, sea ice area is overestimated. In summer, Arctic sea ice is too thick compared to PIOMAS. In March, sea ice thickness is slightly overestimated in the Central Arctic but in the Bering and Kara Seas, the ice thickness is lower than in PIOMAS.</p><p>While the general picture of Arctic sea ice looks good, EC-Earth suffers from a warm bias in the Southern Ocean. This is also reflected by a substantial underestimation of sea ice area in the Antarctic.</p><p>Different ensemble members of the future scenario projections of sea ice show a large range of the date of first year with a minimum ice area below 1 million square kilometers in the Arctic. The year varies between 2024 and 2056. Interestingly, this range does not differ very much with the emission scenario and even under the low emission scenario SSP1-1.9 summer Arctic sea ice almost totally disappears.</p>


2016 ◽  
Vol 10 (5) ◽  
pp. 2003-2012 ◽  
Author(s):  
Rachel L. Tilling ◽  
Andy Ridout ◽  
Andrew Shepherd

Abstract. Timely observations of sea ice thickness help us to understand the Arctic climate, and have the potential to support seasonal forecasts and operational activities in the polar regions. Although it is possible to calculate Arctic sea ice thickness using measurements acquired by CryoSat-2, the latency of the final release data set is typically 1 month due to the time required to determine precise satellite orbits. We use a new fast-delivery CryoSat-2 data set based on preliminary orbits to compute Arctic sea ice thickness in near real time (NRT), and analyse this data for one sea ice growth season from October 2014 to April 2015. We show that this NRT sea-ice-thickness product is of comparable accuracy to that produced using the final release CryoSat-2 data, with a mean thickness difference of 0.9 cm, demonstrating that the satellite orbit is not a critical factor in determining sea ice freeboard. In addition, the CryoSat-2 fast-delivery product also provides measurements of Arctic sea ice thickness within 3 days of acquisition by the satellite, and a measurement is delivered, on average, within 14, 7 and 6 km of each location in the Arctic every 2, 14 and 28 days respectively. The CryoSat-2 NRT sea-ice-thickness data set provides an additional constraint for short-term and seasonal predictions of changes in the Arctic ice cover and could support industries such as tourism and transport through assimilation in operational models.


2009 ◽  
Vol 22 (1) ◽  
pp. 165-176 ◽  
Author(s):  
R. W. Lindsay ◽  
J. Zhang ◽  
A. Schweiger ◽  
M. Steele ◽  
H. Stern

Abstract The minimum of Arctic sea ice extent in the summer of 2007 was unprecedented in the historical record. A coupled ice–ocean model is used to determine the state of the ice and ocean over the past 29 yr to investigate the causes of this ice extent minimum within a historical perspective. It is found that even though the 2007 ice extent was strongly anomalous, the loss in total ice mass was not. Rather, the 2007 ice mass loss is largely consistent with a steady decrease in ice thickness that began in 1987. Since then, the simulated mean September ice thickness within the Arctic Ocean has declined from 3.7 to 2.6 m at a rate of −0.57 m decade−1. Both the area coverage of thin ice at the beginning of the melt season and the total volume of ice lost in the summer have been steadily increasing. The combined impact of these two trends caused a large reduction in the September mean ice concentration in the Arctic Ocean. This created conditions during the summer of 2007 that allowed persistent winds to push the remaining ice from the Pacific side to the Atlantic side of the basin and more than usual into the Greenland Sea. This exposed large areas of open water, resulting in the record ice extent anomaly.


2021 ◽  
Author(s):  
Harry Heorton ◽  
Michel Tsamados ◽  
Paul Holland ◽  
Jack Landy

<p><span>We combine satellite-derived observations of sea ice concentration, drift, and thickness to provide the first observational decomposition of the dynamic (advection/divergence) and thermodynamic (melt/growth) drivers of wintertime Arctic sea ice volume change. Ten winter growth seasons are analyzed over the CryoSat-2 period between October 2010 and April 2020. Sensitivity to several observational products is performed to provide an estimated uncertainty of the budget calculations. The total thermodynamic ice volume growth and dynamic ice losses are calculated with marked seasonal, inter-annual and regional variations</span><span>. Ice growth is fastest during Autumn, in the Marginal Seas and over first year ice</span><span>. Our budget decomposition methodology can help diagnose the processes confounding climate model predictions of sea ice. We make our product and code available to the community in monthly pan-Arctic netcdft files for the entire October 2010 to April 2020 period.</span></p>


2016 ◽  
Author(s):  
R. L. Tilling ◽  
A. Ridout ◽  
A. Shepherd

Abstract. Timely observations of sea ice thickness help us to understand Arctic climate, and can support maritime activities in the Polar Regions. Although it is possible to calculate Arctic sea ice thickness using measurements acquired by CryoSat-2, the latency of the final release dataset is typically one month, due to the time required to determine precise satellite orbits. We use a new fast delivery CryoSat-2 dataset based on preliminary orbits to compute Arctic sea ice thickness in near real time (NRT), and analyse this data for one sea ice growth season from October 2014 to April 2015. We show that this NRT sea ice thickness product is of comparable accuracy to that produced using the final release CryoSat-2 data, with an average thickness difference of 5 cm, demonstrating that the satellite orbit is not a critical factor in determining sea ice freeboard. In addition, the CryoSat-2 fast delivery product also provides measurements of Arctic sea ice thickness within three days of acquisition by the satellite, and a measurement is delivered, on average, within 10, 7 and 6 km of each location in the Arctic every 2, 14 and 28 days respectively. The CryoSat-2 NRT sea ice thickness dataset provides an additional constraint for seasonal predictions of Arctic climate change, and will allow industries such as tourism and transport to navigate the polar oceans with safety and care.


Sign in / Sign up

Export Citation Format

Share Document