scholarly journals Observations of sea ice melt from Operation IceBridge imagery

2020 ◽  
Vol 14 (10) ◽  
pp. 3523-3536
Author(s):  
Nicholas C. Wright ◽  
Chris M. Polashenski ◽  
Scott T. McMichael ◽  
Ross A. Beyer

Abstract. The summer albedo of Arctic sea ice is heavily dependent on the fraction and color of melt ponds that form on the ice surface. This work presents a new dataset of sea ice surface fractions along Operation IceBridge (OIB) flight tracks derived from the Digital Mapping System optical imagery set. This dataset was created by deploying version 2 of the Open Source Sea-ice Processing (OSSP) algorithm to NASA's Advanced Supercomputing Pleiades System. These new surface fraction results are then analyzed to investigate the behavior of meltwater on first-year ice in comparison to multiyear ice. Observations herein show that first-year ice does not ubiquitously have a higher melt pond fraction than multiyear ice under the same forcing conditions, contrary to established knowledge in the sea ice community. We discover and document a larger possible spread of pond fractions on first-year ice leading to both high and low pond coverage, in contrast to the uniform melt evolution that has been previously observed on multiyear ice floes. We also present a selection of optical images that capture both the typical and atypical ice types, as observed from the OIB dataset. The derived OIB data presented here will be key to explore the behavior of melt pond formation Arctic sea ice.

2019 ◽  
Author(s):  
Nicholas C. Wright ◽  
Chris M. Polashenski ◽  
Scott T. McMichael ◽  
Ross A. Beyer

Abstract. The summer albedo of Arctic sea ice is heavily dependent on the fraction and color of melt ponds that form on the ice surface. This work presents a new dataset of sea ice surface fractions along Operation IceBridge (OIB) flight tracks derived from the Digital Mapping System optical imagery set. This dataset was created by deploying version 2 of the Open Source Sea-ice Processing (OSSP) algorithm to NASA’s Advanced Supercomputing Pleiades System. These new surface fraction results are then analyzed to investigate the behavior of meltwater on first-year ice in comparison to multiyear ice. Observations herein show that first-year ice does not ubiquitously have a higher melt pond fraction than multiyear ice under the same forcing conditions, contrary to established knowledge in the sea ice community. We discover and document a larger possible spread of pond fractions on first year ice leading to both high and low pond coverage, in contrast to the uniform melt evolution that has been previously observed on multiyear ice floes. We also present a selection of optical images that captures both the typical and atypical ice types, as observed from the OIB dataset. We hope to demonstrate the power of this new dataset and to encourage future collaborative efforts to utilize the OIB data to explore the behavior of melt pond formation Arctic sea ice.


2014 ◽  
Vol 11 (5) ◽  
pp. 7485-7519 ◽  
Author(s):  
N.-X. Geilfus ◽  
R. J. Galley ◽  
O. Crabeck ◽  
T. Papakyriakou ◽  
J. Landy ◽  
...  

Abstract. Melt pond formation is a common feature of the spring and summer Arctic sea ice. However, the role of the melt ponds formation and the impact of the sea ice melt on both the direction and size of CO2 flux between air and sea is still unknown. Here we describe the CO2-carbonate chemistry of melting sea ice, melt ponds and the underlying seawater associated with measurement of CO2 fluxes across first year landfast sea ice in the Resolute Passage, Nunavut, in June 2012. Early in the melt season, the increase of the ice temperature and the subsequent decrease of the bulk ice salinity promote a strong decrease of the total alkalinity (TA), total dissolved inorganic carbon (TCO2) and partial pressure of CO2 (pCO2) within the bulk sea ice and the brine. Later on, melt pond formation affects both the bulk sea ice and the brine system. As melt ponds are formed from melted snow the in situ melt pond pCO2 is low (36 μatm). The percolation of this low pCO2 melt water into the sea ice matrix dilutes the brine resulting in a strong decrease of the in situ brine pCO2 (to 20 μatm). As melt ponds reach equilibrium with the atmosphere, their in situ pCO2 increase (up to 380 μatm) and the percolation of this high concentration pCO2 melt water increase the in situ brine pCO2 within the sea ice matrix. The low in situ pCO2 observed in brine and melt ponds results in CO2 fluxes of −0.04 to −5.4 mmol m–2 d–1. As melt ponds reach equilibrium with the atmosphere, the uptake becomes less significant. However, since melt ponds are continuously supplied by melt water their in situ pCO2 still remains low, promoting a continuous but moderate uptake of CO2 (~ −1mmol m–2 d–1). The potential uptake of atmospheric CO2 by melting sea ice during the Arctic summer has been estimated from 7 to 16 Tg of C ignoring the role of melt ponds. This additional uptake of CO2 associated to Arctic sea ice needs to be further explored and considered in the estimation of the Arctic Ocean's overall CO2 budget.


2015 ◽  
Vol 12 (6) ◽  
pp. 2047-2061 ◽  
Author(s):  
N.-X. Geilfus ◽  
R. J. Galley ◽  
O. Crabeck ◽  
T. Papakyriakou ◽  
J. Landy ◽  
...  

Abstract. Melt pond formation is a common feature of spring and summer Arctic sea ice, but the role and impact of sea ice melt and pond formation on both the direction and size of CO2 fluxes between air and sea is still unknown. Here we report on the CO2–carbonate chemistry of melting sea ice, melt ponds and the underlying seawater as well as CO2 fluxes at the surface of first-year landfast sea ice in the Resolute Passage, Nunavut, in June 2012. Early in the melt season, the increase in ice temperature and the subsequent decrease in bulk ice salinity promote a strong decrease of the total alkalinity (TA), total dissolved inorganic carbon (TCO2) and partial pressure of CO2 (pCO2) within the bulk sea ice and the brine. As sea ice melt progresses, melt ponds form, mainly from melted snow, leading to a low in situ melt pond pCO2 (36 μatm). The percolation of this low salinity and low pCO2 meltwater into the sea ice matrix decreased the brine salinity, TA and TCO2, and lowered the in situ brine pCO2 (to 20 μatm). This initial low in situ pCO2 observed in brine and melt ponds results in air–ice CO2 fluxes ranging between −0.04 and −5.4 mmol m−2 day−1 (negative sign for fluxes from the atmosphere into the ocean). As melt ponds strive to reach pCO2 equilibrium with the atmosphere, their in situ pCO2 increases (up to 380 μatm) with time and the percolation of this relatively high concentration pCO2 meltwater increases the in situ brine pCO2 within the sea ice matrix as the melt season progresses. As the melt pond pCO2 increases, the uptake of atmospheric CO2 becomes less significant. However, since melt ponds are continuously supplied by meltwater, their in situ pCO2 remains undersaturated with respect to the atmosphere, promoting a continuous but moderate uptake of CO2 (~ −1 mmol m−2 day−1) into the ocean. Considering the Arctic seasonal sea ice extent during the melt period (90 days), we estimate an uptake of atmospheric CO2 of −10.4 Tg of C yr−1. This represents an additional uptake of CO2 associated with Arctic sea ice that needs to be further explored and considered in the estimation of the Arctic Ocean's overall CO2 budget.


2020 ◽  
Vol 61 (82) ◽  
pp. 154-163
Author(s):  
Qing Li ◽  
Chunxia Zhou ◽  
Lei Zheng ◽  
Tingting Liu ◽  
Xiaotong Yang

AbstractThe evolution of melt ponds on Arctic sea ice in summer is one of the main factors that affect sea-ice albedo and hence the polar climate system. Due to the different spectral properties of open water, melt pond and sea ice, the melt pond fraction (MPF) can be retrieved using a fully constrained least-squares algorithm, which shows a high accuracy with root mean square error ~0.06 based on the validation experiment using WorldView-2 image. In this study, the evolution of ponds on first-year and multiyear ice in the Canadian Arctic Archipelago was compared based on Sentinel-2 and Landsat 8 images. The relationships of pond coverage with air temperature and albedo were analysed. The results show that the pond coverage on first-year ice changed dramatically with seasonal maximum of 54%, whereas that on multiyear ice changed relatively flat with only 30% during the entire melting period. During the stage of pond formation, the ponds expanded rapidly when the temperature increased to over 0°C for three consecutive days. Sea-ice albedo shows a significantly negative correlation (R = −1) with the MPF in melt season and increases gradually with the refreezing of ponds and sea ice.


2014 ◽  
Vol 8 (6) ◽  
pp. 2147-2162 ◽  
Author(s):  
R. K. Scharien ◽  
J. Landy ◽  
D. G. Barber

Abstract. Understanding the evolution of melt ponds on Arctic sea ice is important for climate model parameterisations, weather forecast models and process studies involving mass, energy and biogeochemical exchanges across the ocean–sea ice–atmosphere interface. A field campaign was conducted in a region of level first-year sea ice (FYI) in the central Canadian Arctic Archipelago (CAA), during the summer of 2012, to examine the potential for estimating melt pond fraction (fp) from satellite synthetic aperture radar (SAR). In this study, 5.5 GHz (C-band) dual co- (HH + VV – horizontal transmit and horizontal receive + vertical transmit and vertical receive) and cross-polarisation (HV + HH – horizontal transmit and vertical receive + horizontal transmit and horizontal receive) radar scatterometer measurements of melt-pond-covered FYI are combined with ice and pond properties to analyse the effects of in situ physical and morphological changes on backscatter parameters. Surface roughness statistics of ice and ponds are characterised and compared to the validity domains of the Bragg and integral equation model (IEM) scattering models. Experimental and model results are used to outline the potential and limitations of the co-polarisation ratio (VV / HH) for retrieving melt pond information, including fp, at large incidence angles (≥35°). Despite high variability in cross-polarisation ratio (HV / HH) magnitudes, increases at small incidence angles (<30°) are attributed to the formation of ice lids on ponds. Implications of the results for pond information retrievals from satellite C-, L- and P-band SARs are discussed.


2017 ◽  
Vol 122 (1) ◽  
pp. 413-440 ◽  
Author(s):  
Chris Polashenski ◽  
Kenneth M. Golden ◽  
Donald K. Perovich ◽  
Eric Skyllingstad ◽  
Alexandra Arnsten ◽  
...  

2021 ◽  
Vol 15 (9) ◽  
pp. 4517-4525
Author(s):  
Don Perovich ◽  
Madison Smith ◽  
Bonnie Light ◽  
Melinda Webster

Abstract. On Arctic sea ice, the melt of snow and sea ice generate a summertime flux of fresh water to the upper ocean. The partitioning of this meltwater to storage in melt ponds and deposition in the ocean has consequences for the surface heat budget, the sea ice mass balance, and primary productivity. Synthesizing results from the 1997–1998 SHEBA field experiment, we calculate the sources and sinks of meltwater produced on a multiyear floe during summer melt. The total meltwater input to the system from snowmelt, ice melt, and precipitation from 1 June to 9 August was equivalent to a layer of water 80 cm thick over the ice-covered and open ocean. A total of 85 % of this meltwater was deposited in the ocean, and only 15 % of this meltwater was stored in ponds. The cumulative contributions of meltwater input to the ocean from drainage from the ice surface and bottom melting were roughly equal.


2014 ◽  
Vol 8 (5) ◽  
pp. 5227-5292 ◽  
Author(s):  
L. Istomina ◽  
G. Heygster ◽  
M. Huntemann ◽  
P. Schwarz ◽  
G. Birnbaum ◽  
...  

Abstract. The presence of melt ponds on the Arctic sea ice strongly affects the energy balance of the Arctic Ocean in summer. It affects albedo as well as transmittance through the sea ice, which has consequences on the heat balance and mass balance of sea ice. An algorithm to retrieve melt pond fraction and sea ice albedo (Zege et al., 2014) from the MEdium Resolution Imaging Spectrometer (MERIS) data is validated against aerial, ship borne and in situ campaign data. The result show the best correlation for landfast and multiyear ice of high ice concentrations (albedo: R = 0.92, RMS = 0.068, melt pond fraction: R = 0.6, RMS = 0.065). The correlation for lower ice concentrations, subpixel ice floes, blue ice and wet ice is lower due to complicated surface conditions and ice drift. Combining all aerial observations gives a mean albedo RMS equal to 0.089 and a mean melt pond fraction RMS equal to 0.22. The in situ melt pond fraction correlation is R = 0.72 with an RMS = 0.14. Ship cruise data might be affected by documentation of varying accuracy within the ASPeCT protocol, which is the reason for discrepancy between the satellite value and observed value: mean R = 0.21, mean RMS = 0.16. An additional dynamic spatial cloud filter for MERIS over snow and ice has been developed to assist with the validation on swath data. The case studies and trend analysis for the whole MERIS period (2002–2011) show pronounced and reasonable spatial features of melt pond fractions and sea ice albedo. The most prominent feature is the melt onset shifting towards spring (starting already in weeks 3 and 4 of June) within the multiyear ice area, north to the Queen Elizabeth Islands and North Greenland.


2011 ◽  
Vol 52 (57) ◽  
pp. 355-359 ◽  
Author(s):  
Donald K. Perovich ◽  
Jacqueline A. Richter-Menge ◽  
Kathleen F. Jones ◽  
Bonnie Light ◽  
Bruce C. Elder ◽  
...  

AbstractThere has been a marked decline in the summer extent of Arctic sea ice over the past few decades. Data from autonomous ice mass-balance buoys can enhance our understanding of this decline. These buoys monitor changes in snow deposition and ablation, ice growth, and ice surface and bottom melt. Results from the summer of 2008 showed considerable large-scale spatial variability in the amount of surface and bottom melt. Small amounts of melting were observed north of Greenland, while melting in the southern Beaufort Sea was quite large. Comparison of net solar heat input to the ice and heat required for surface ablation showed only modest correlation. However, there was a strong correlation between solar heat input to the ocean and bottom melting. As the ice concentration in the Beaufort Sea region decreased, there was an increase in solar heat to the ocean and an increase in bottom melting.


Sign in / Sign up

Export Citation Format

Share Document