scholarly journals Monitoring evolution of melt ponds on first-year and multiyear sea ice in the Canadian Arctic Archipelago with optical satellite data

2020 ◽  
Vol 61 (82) ◽  
pp. 154-163
Author(s):  
Qing Li ◽  
Chunxia Zhou ◽  
Lei Zheng ◽  
Tingting Liu ◽  
Xiaotong Yang

AbstractThe evolution of melt ponds on Arctic sea ice in summer is one of the main factors that affect sea-ice albedo and hence the polar climate system. Due to the different spectral properties of open water, melt pond and sea ice, the melt pond fraction (MPF) can be retrieved using a fully constrained least-squares algorithm, which shows a high accuracy with root mean square error ~0.06 based on the validation experiment using WorldView-2 image. In this study, the evolution of ponds on first-year and multiyear ice in the Canadian Arctic Archipelago was compared based on Sentinel-2 and Landsat 8 images. The relationships of pond coverage with air temperature and albedo were analysed. The results show that the pond coverage on first-year ice changed dramatically with seasonal maximum of 54%, whereas that on multiyear ice changed relatively flat with only 30% during the entire melting period. During the stage of pond formation, the ponds expanded rapidly when the temperature increased to over 0°C for three consecutive days. Sea-ice albedo shows a significantly negative correlation (R = −1) with the MPF in melt season and increases gradually with the refreezing of ponds and sea ice.

2017 ◽  
Author(s):  
Margaux Gourdal ◽  
Martine Lizotte ◽  
Guillaume Massé ◽  
Michel Gosselin ◽  
Michael Scarratt ◽  
...  

Abstract. Melt pond formation is a natural seasonal pan-Arctic process. During the thawing season, melt ponds may cover up to 90 % of the Arctic first year sea ice (FYI) and 15 to 25 % of the multi-year sea ice (MYI). These pools of water lying at the surface of the sea-ice cover are habitats for microorganisms and represent a potential source of the biogenic gas dimethylsulfide (DMS) for the atmosphere. Here we report on the concentrations and dynamics of DMS in nine melt ponds sampled in July 2014 in the Eastern Canadian Arctic. DMS concentrations were under the detection limit (


2019 ◽  
Author(s):  
Yifan Ding ◽  
Xiao Cheng ◽  
Jiping Liu ◽  
Fengming Hui ◽  
Zhenzhan Wang

Abstract. The accurate knowledge of variations of melt ponds is important for understanding Arctic energy budget due to its albedo-transmittance-melt feedback. In this study, we develop and validate a new method for retrieving melt pond fraction (MPF) from the MODIS surface reflectance. We construct an ensemble-based deep neural network and use in-situ observations of MPF from multi-sources to train the network. The results show that our derived MPF is in good agreement with the observations, and relatively outperforms the MPF retrieved by University of Hamburg. Built on this, we create a new MPF data from 2000 to 2017 (the longest data in our knowledge), and analyze the spatial and temporal variability of MPF. It is found that the MPF has significant increasing trends from late July to early September, which is largely contributed by the MPF over the first-year sea ice. The analysis based on our MPF during 2000–2017 confirms that the integrated MPF to late June does promise to improve the prediction skill of seasonal Arctic sea ice minimum. However, our MPF data shows concentrated significant correlations first appear in a band, extending from the eastern Beaufort Sea, through the central Arctic, to the northern East Siberian and Laptev Seas in early-mid June, and then shifts towards large areas of the Beaufort Sea, Canadian Arctic, the northern Greenland Sea and the central Arctic basin.


2015 ◽  
Vol 9 (1) ◽  
pp. 255-268 ◽  
Author(s):  
D. V. Divine ◽  
M. A. Granskog ◽  
S. R. Hudson ◽  
C. A. Pedersen ◽  
T. I. Karlsen ◽  
...  

Abstract. The paper presents a case study of the regional (≈150 km) morphological and optical properties of a relatively thin, 70–90 cm modal thickness, first-year Arctic sea ice pack in an advanced stage of melt. The study combines in situ broadband albedo measurements representative of the four main surface types (bare ice, dark melt ponds, bright melt ponds and open water) and images acquired by a helicopter-borne camera system during ice-survey flights. The data were collected during the 8-day ICE12 drift experiment carried out by the Norwegian Polar Institute in the Arctic, north of Svalbard at 82.3° N, from 26 July to 3 August 2012. A set of > 10 000 classified images covering about 28 km2 revealed a homogeneous melt across the study area with melt-pond coverage of ≈ 0.29 and open-water fraction of ≈ 0.11. A decrease in pond fractions observed in the 30 km marginal ice zone (MIZ) occurred in parallel with an increase in open-water coverage. The moving block bootstrap technique applied to sequences of classified sea-ice images and albedo of the four surface types yielded a regional albedo estimate of 0.37 (0.35; 0.40) and regional sea-ice albedo of 0.44 (0.42; 0.46). Random sampling from the set of classified images allowed assessment of the aggregate scale of at least 0.7 km2 for the study area. For the current setup configuration it implies a minimum set of 300 images to process in order to gain adequate statistics on the state of the ice cover. Variance analysis also emphasized the importance of longer series of in situ albedo measurements conducted for each surface type when performing regional upscaling. The uncertainty in the mean estimates of surface type albedo from in situ measurements contributed up to 95% of the variance of the estimated regional albedo, with the remaining variance resulting from the spatial inhomogeneity of sea-ice cover.


2020 ◽  
Vol 14 (12) ◽  
pp. 4675-4686
Author(s):  
Stephen E. L. Howell ◽  
Randall K. Scharien ◽  
Jack Landy ◽  
Mike Brady

Abstract. Melt ponds form on the surface of Arctic sea ice during spring, influencing how much solar radiation is absorbed into the sea ice–ocean system, which in turn impacts the ablation of sea ice during the melt season. Accordingly, melt pond fraction (fp) has been shown to be a useful predictor of sea ice area during the summer months. Sea ice dynamic and thermodynamic processes operating within the narrow channels and inlets of the Canadian Arctic Archipelago (CAA) during the summer months are difficult for model simulations to accurately resolve. Additional information on fp variability in advance of the melt season within the CAA could help constrain model simulations and/or provide useful information in advance of the shipping season. Here, we use RADARSAT-2 imagery to predict and analyze peak melt pond fraction (fpk) and evaluate its utility to provide predictive information with respect to sea ice area during the melt season within the CAA from 2009–2018. The temporal variability of RADARSAT-2 fpk over the 10-year record was found to be strongly linked to the variability of mean April multi-year ice area with a statistically significant detrended correlation (R) of R=-0.89. The spatial distribution of RADARSAT-2 fpk was found to be in excellent agreement with the sea ice stage of development prior to the melt season. RADARSAT-2 fpk values were in good agreement with fpk observed from in situ observations but were found to be ∼ 0.05 larger compared to MODIS fpk observations. Dynamically stable sea ice regions within the CAA exhibited higher detrended correlations between RADARSAT-2 fpk and summer sea ice area. Our results show that RADARSAT-2 fpk can be used to provide predictive information about summer sea ice area for a key shipping region of the Northwest Passage.


2014 ◽  
Vol 11 (5) ◽  
pp. 7485-7519 ◽  
Author(s):  
N.-X. Geilfus ◽  
R. J. Galley ◽  
O. Crabeck ◽  
T. Papakyriakou ◽  
J. Landy ◽  
...  

Abstract. Melt pond formation is a common feature of the spring and summer Arctic sea ice. However, the role of the melt ponds formation and the impact of the sea ice melt on both the direction and size of CO2 flux between air and sea is still unknown. Here we describe the CO2-carbonate chemistry of melting sea ice, melt ponds and the underlying seawater associated with measurement of CO2 fluxes across first year landfast sea ice in the Resolute Passage, Nunavut, in June 2012. Early in the melt season, the increase of the ice temperature and the subsequent decrease of the bulk ice salinity promote a strong decrease of the total alkalinity (TA), total dissolved inorganic carbon (TCO2) and partial pressure of CO2 (pCO2) within the bulk sea ice and the brine. Later on, melt pond formation affects both the bulk sea ice and the brine system. As melt ponds are formed from melted snow the in situ melt pond pCO2 is low (36 μatm). The percolation of this low pCO2 melt water into the sea ice matrix dilutes the brine resulting in a strong decrease of the in situ brine pCO2 (to 20 μatm). As melt ponds reach equilibrium with the atmosphere, their in situ pCO2 increase (up to 380 μatm) and the percolation of this high concentration pCO2 melt water increase the in situ brine pCO2 within the sea ice matrix. The low in situ pCO2 observed in brine and melt ponds results in CO2 fluxes of −0.04 to −5.4 mmol m–2 d–1. As melt ponds reach equilibrium with the atmosphere, the uptake becomes less significant. However, since melt ponds are continuously supplied by melt water their in situ pCO2 still remains low, promoting a continuous but moderate uptake of CO2 (~ −1mmol m–2 d–1). The potential uptake of atmospheric CO2 by melting sea ice during the Arctic summer has been estimated from 7 to 16 Tg of C ignoring the role of melt ponds. This additional uptake of CO2 associated to Arctic sea ice needs to be further explored and considered in the estimation of the Arctic Ocean's overall CO2 budget.


2014 ◽  
Vol 119 (5) ◽  
pp. 3054-3075 ◽  
Author(s):  
Jack Landy ◽  
Jens Ehn ◽  
Megan Shields ◽  
David Barber

2019 ◽  
Author(s):  
Nicholas C. Wright ◽  
Chris M. Polashenski ◽  
Scott T. McMichael ◽  
Ross A. Beyer

Abstract. The summer albedo of Arctic sea ice is heavily dependent on the fraction and color of melt ponds that form on the ice surface. This work presents a new dataset of sea ice surface fractions along Operation IceBridge (OIB) flight tracks derived from the Digital Mapping System optical imagery set. This dataset was created by deploying version 2 of the Open Source Sea-ice Processing (OSSP) algorithm to NASA’s Advanced Supercomputing Pleiades System. These new surface fraction results are then analyzed to investigate the behavior of meltwater on first-year ice in comparison to multiyear ice. Observations herein show that first-year ice does not ubiquitously have a higher melt pond fraction than multiyear ice under the same forcing conditions, contrary to established knowledge in the sea ice community. We discover and document a larger possible spread of pond fractions on first year ice leading to both high and low pond coverage, in contrast to the uniform melt evolution that has been previously observed on multiyear ice floes. We also present a selection of optical images that captures both the typical and atypical ice types, as observed from the OIB dataset. We hope to demonstrate the power of this new dataset and to encourage future collaborative efforts to utilize the OIB data to explore the behavior of melt pond formation Arctic sea ice.


Sign in / Sign up

Export Citation Format

Share Document