scholarly journals Brief communication: New radar constraints support presence of ice older than 1.5 Myr at Little Dome C

2021 ◽  
Vol 15 (4) ◽  
pp. 1881-1888
Author(s):  
David A. Lilien ◽  
Daniel Steinhage ◽  
Drew Taylor ◽  
Frédéric Parrenin ◽  
Catherine Ritz ◽  
...  

Abstract. The area near Dome C, East Antarctica, is thought to be one of the most promising targets for recovering a continuous ice-core record spanning more than a million years. The European Beyond EPICA consortium has selected Little Dome C (LDC), an area ∼ 35 km southeast of Concordia Station, to attempt to recover such a record. Here, we present the results of the final ice-penetrating radar survey used to refine the exact drill site. These data were acquired during the 2019–2020 austral summer using a new, multi-channel high-resolution very high frequency (VHF) radar operating in the frequency range of 170–230 MHz. This new instrument is able to detect reflectors in the near-basal region, where previous surveys were largely unable to detect horizons. The radar stratigraphy is used to transfer the timescale of the EPICA Dome C ice core (EDC) to the area of Little Dome C, using radar isochrones dating back past 600 ka. We use these data to derive the expected depth–age relationship through the ice column at the now-chosen drill site, termed BELDC (Beyond EPICA LDC). These new data indicate that the ice at BELDC is considerably older than that at EDC at the same depth and that there is about 375 m of ice older than 600 kyr at BELDC. Stratigraphy is well preserved to 2565 m, ∼ 93 % of the ice thickness, below which there is a basal unit with unknown properties. An ice-flow model tuned to the isochrones suggests ages likely reach 1.5 Myr near 2500 m, ∼ 65 m above the basal unit and ∼ 265 m above the bed, with sufficient resolution (19 ± 2 kyr m−1) to resolve 41 kyr glacial cycles.

2020 ◽  
Author(s):  
David A. Lilien ◽  
Daniel Steinhage ◽  
Drew Taylor ◽  
Frédéric Parrenin ◽  
Catherine Ritz ◽  
...  

Abstract. The area near Dome C, East Antarctica, is thought to be one of the most promising targets for recovering a continuous ice-core record spanning more than a million years. The European Beyond EPICA consortium has selected Little Dome C, an area ~35 km south-east of Concordia Station, to attempt to recover such a record. Here, we present the results of the final ice-penetrating radar survey used to refine the exact drill site. These data were acquired during the 2019–2020 Austral summer using a new, multi-channel high-resolution VHF radar operating in the frequency range of 170–230 MHz. This new instrument is able to detect reflections in the near-basal region, where previous surveys were unable to trace continuous horizons. The radar stratigraphy is used to transfer the timescale of the EPICA Dome C ice core (EDC) to the area of Little Dome C, using radar isochrones dating back past 600 ka. We use these data to derive the expected depth–age relationship through the ice column at the now-chosen drill site, termed BELDC. These new data indicate that the ice at BELDC is considerably older than that at EDC at the same depth, and that there is about 375 m of ice older than 600 ka at BELDC. Stratigraphy is well preserved to 2565 m, below which there is a basal unit with unknown properties. A simple ice flow model tuned to the isochrones suggests ages likely reach 1.5 Ma near 2525 m, ~40 m above the basal unit and ~240 m above the bed, with sufficient resolution (14±1 ka m−1) to resolve 41 ka glacial cycles.


2008 ◽  
Vol 48 ◽  
pp. 100-102 ◽  
Author(s):  
Susanne L. Buchardt ◽  
Dorthe Dahl-Jensen

AbstractNo continuous record from Greenland of the Eemian interglacial period (130–115 ka BP) currently exists. However, a new ice-core drill site has been suggested at 77.449˚ N, 51.056˚Win north-west Greenland (North Eemian or NEEM). Radio-echo sounding images and flow model investigations indicate that an undisturbed Eemian record may be obtained at NEEM. In this work, a two-dimensional ice flow model with time-dependent accumulation rate and ice thickness is used to estimate the location of the Eemian layer at the new drill site. The model is used to simulate the ice flow along the ice ridge leading to the drill site. Unknown flow parameters are found through a Monte Carlo analysis of the flow model constrained by observed isochrones in the ice. The results indicate that the Eemian layer is approximately 60m thick and that its base is located approximately 100m above bedrock.


1997 ◽  
Vol 43 (144) ◽  
pp. 300-306 ◽  
Author(s):  
D. Dahl-Jensen ◽  
N.S. Gundestrup ◽  
K. Keller ◽  
S.J. Johnsen ◽  
S.P. Gogineni ◽  
...  

AbstractA new deep ice-core drilling site has been identified in north Greenland at 75.12° N, 42.30° W, 316 km north-northwest (NNW) of the GRIР drill site on the summit of the ice sheet. The ice thickness here is 3085 m; the surface elevation is 2919 m.The North GRIP (NGRIP) site is identified so that ice of Eemian age (115–130 ka BP,calendar years before present) is located as far above bedrock as possible and so the thickness of the Eemian layer is as great as possible. An ice-flow model, similar to the one used to date the GRIP ice core, is used to simulate the flow along the NNW-trending ice ridge. Surface and bedrock elevations, surface accumulation-rate distribution and radio-echo sounding along the ridge have been used as model input.The surface accumulation rate drops from 0.23 m fee equivalent year−1 at GRIP to 0.19 m ice equivalent year−1 50 km from GRIP. Over the following 300km the accumulation is relatively constant, before it starts decreasing again further north. Ice thicknesses up to 3250 m bring the temperature of the basal ice up to the pressure-melting point 100–250 km from GRIP. The NGRIP site islocated 316 km from GRIP in a region where the bedrock is smooth and the accumulation rate is 0.19 m ice equivalent year−1. The modeled basal ice here has always been a few degrees below the pressure-melting point. Internal radio-echo sounding horizons can be traced between the GRIP and NGRIP sites, allowing us to date the ice down to 2300 m depth (52 ka BP). An ice-flow model predicts that the Eemian-age ice will be located in the depth range 2710–2800 m, which is 285 m above the bedrock. This is 120 m further above the bedrock, and the thickness of the Eemian layer of ice is 20 m thicker, than at the GRIP ice-core site.


1997 ◽  
Vol 43 (144) ◽  
pp. 300-306 ◽  
Author(s):  
D. Dahl-Jensen ◽  
N.S. Gundestrup ◽  
K. Keller ◽  
S.J. Johnsen ◽  
S.P. Gogineni ◽  
...  

AbstractA new deep ice-core drilling site has been identified in north Greenland at 75.12° N, 42.30° W, 316 km north-northwest (NNW) of the GRIР drill site on the summit of the ice sheet. The ice thickness here is 3085 m; the surface elevation is 2919 m.The North GRIP (NGRIP) site is identified so that ice of Eemian age (115–130 ka BP,calendar years before present) is located as far above bedrock as possible and so the thickness of the Eemian layer is as great as possible. An ice-flow model, similar to the one used to date the GRIP ice core, is used to simulate the flow along the NNW-trending ice ridge. Surface and bedrock elevations, surface accumulation-rate distribution and radio-echo sounding along the ridge have been used as model input.The surface accumulation rate drops from 0.23 m fee equivalent year−1at GRIP to 0.19 m ice equivalent year−150 km from GRIP. Over the following 300km the accumulation is relatively constant, before it starts decreasing again further north. Ice thicknesses up to 3250 m bring the temperature of the basal ice up to the pressure-melting point 100–250 km from GRIP. The NGRIP site islocated 316 km from GRIP in a region where the bedrock is smooth and the accumulation rate is 0.19 m ice equivalent year−1. The modeled basal ice here has always been a few degrees below the pressure-melting point. Internal radio-echo sounding horizons can be traced between the GRIP and NGRIP sites, allowing us to date the ice down to 2300 m depth (52 ka BP). An ice-flow model predicts that the Eemian-age ice will be located in the depth range 2710–2800 m, which is 285 m above the bedrock. This is 120 m further above the bedrock, and the thickness of the Eemian layer of ice is 20 m thicker, than at the GRIP ice-core site.


2013 ◽  
Vol 59 (213) ◽  
pp. 9-20 ◽  
Author(s):  
Reinhard Drews ◽  
Carlos Martín ◽  
Daniel Steinhage ◽  
Olaf Eisen

AbstractWe present a comprehensive approach (including field data, remote sensing and an anisotropic ice-flow model) to characterize Halvfarryggen ice dome in coastal Dronning Maud Land, Antarctica. This is a potential drill site for the International Partnerships in Ice Core Sciences, which has identified the need for ice cores covering atmospheric conditions during the last few millennia. We derive the surface topography, the ice stratigraphy from radar data, and accumulation rates which vary from 400 to 1670 kg m−2 a−1 due to preferred wind directions and changing surface slope. The stratigraphy shows anticlines and synclines beneath the divides. We transfer Dansgaard–Johnsen age–depth scales from the flanks along isochrones to the divide in the upper 20–50% of the ice thickness and show that they compare well with the results of a full-Stokes, anisotropic ice-flow model which predicts (1) 11 ka BP ice at 90% of the ice thickness, (2) a temporally stable divide for at least 2700–4500 years, (3) basal temperatures below the melting point (−12°C to −5°C) and (4) a highly developed crystal orientation fabric (COF). We suggest drilling into the apices of the deep anticlines, providing a good compromise between record length and temporal resolution and also facilitating studies of the interplay of anisotropic COF and ice flow.


2013 ◽  
Vol 9 (6) ◽  
pp. 2489-2505 ◽  
Author(s):  
H. Fischer ◽  
J. Severinghaus ◽  
E. Brook ◽  
E. Wolff ◽  
M. Albert ◽  
...  

Abstract. The recovery of a 1.5 million yr long ice core from Antarctica represents a keystone of our understanding of Quaternary climate, the progression of glaciation over this time period and the role of greenhouse gas cycles in this progression. Here we tackle the question of where such ice may still be found in the Antarctic ice sheet. We can show that such old ice is most likely to exist in the plateau area of the East Antarctic ice sheet (EAIS) without stratigraphic disturbance and should be able to be recovered after careful pre-site selection studies. Based on a simple ice and heat flow model and glaciological observations, we conclude that positions in the vicinity of major domes and saddle position on the East Antarctic Plateau will most likely have such old ice in store and represent the best study areas for dedicated reconnaissance studies in the near future. In contrast to previous ice core drill site selections, however, we strongly suggest significantly reduced ice thickness to avoid bottom melting. For example for the geothermal heat flux and accumulation conditions at Dome C, an ice thickness lower than but close to about 2500 m would be required to find 1.5 Myr old ice (i.e., more than 700 m less than at the current EPICA Dome C drill site). Within this constraint, the resolution of an Oldest-Ice record and the distance of such old ice to the bedrock should be maximized to avoid ice flow disturbances, for example, by finding locations with minimum geothermal heat flux. As the geothermal heat flux is largely unknown for the EAIS, this parameter has to be carefully determined beforehand. In addition, detailed bedrock topography and ice flow history has to be reconstructed for candidates of an Oldest-Ice ice coring site. Finally, we argue strongly for rapid access drilling before any full, deep ice coring activity commences to bring datable samples to the surface and to allow an age check of the oldest ice.


2014 ◽  
Vol 55 (68) ◽  
pp. 137-146 ◽  
Author(s):  
K.A. Casey ◽  
T.J. Fudge ◽  
T.A. Neumann ◽  
E.J. Steig ◽  
M.G.P. Cavitte ◽  
...  

AbstractSupported by the US National Science Foundation, a new 1500 m, ∼40 ka old ice core will be recovered from South Pole during the 2014/15 and 2015/16 austral summer seasons using the new US intermediate-depth drill. The combination of low temperatures, relatively high accumulation rates and low impurity concentrations at South Pole will yield detailed records of ice chemistry and trace atmospheric gases. The South Pole ice core will provide a climate history record of a unique area of the East Antarctic plateau that is partly influenced by weather systems that cross the West Antarctic ice sheet. The ice at South Pole flows at ∼ 10ma−1 and the South Pole ice-core site is a significant distance from an ice divide. Therefore, ice recovered at depth originated progressively farther upstream of the coring site. New ground-penetrating radar collected over the drill site location shows no anthropogenic influence over the past ∼50 years or upper 15 m. Depth–age scale modeling results show consistent and plausible annual-layer thicknesses and accumulation rate histories, indicating that no significant stratigraphic disturbances exist in the upper 1500 m near the ice-core drill site.


2021 ◽  
Vol 13 (10) ◽  
pp. 4759-4777
Author(s):  
Marie G. P. Cavitte ◽  
Duncan A. Young ◽  
Robert Mulvaney ◽  
Catherine Ritz ◽  
Jamin S. Greenbaum ◽  
...  

Abstract. We present an ice-penetrating radar data set which consists of 26 internal reflecting horizons (IRHs) that cover the entire Dome C area of the East Antarctic plateau, the most extensive to date in the region. This data set uses radar surveys collected over the space of 10 years, starting with an airborne international collaboration in 2008 to explore the region, up to the detailed ground-based surveys in support of the Beyond EPICA – Oldest Ice (BE-OI) European Consortium. Through direct correlation with the EPICA-DC ice core, we date 19 IRHs that span the past four glacial cycles, from 10 ka, beginning of the Holocene, to over 350 ka, ranging from 10 % to 83 % of the ice thickness at the EPICA-DC ice core site. We indirectly date and provide stratigraphic information for seven older IRHs using a 1D ice flow inverse model, going back to an estimated 700 ka. Depth and age uncertainties are quantified for all IRHs and provided as part of the data set. The IRH data set presented in this study is available at the US Antarctic Program Data Center (USAP-DC) (https://doi.org/10.15784/601411, Cavitte et al., 2020) and represents a contribution to the SCAR AntArchitecture action group (AntArchitecture, 2017).


2009 ◽  
Vol 3 (2) ◽  
pp. 195-203 ◽  
Author(s):  
R. Drews ◽  
O. Eisen ◽  
I. Weikusat ◽  
S. Kipfstuhl ◽  
A. Lambrecht ◽  
...  

Abstract. Radio-echo sounding of the Antarctic and Greenlandic ice sheets often reveals a layer in the lowest hundreds of meters above bedrock more or less free of radio echoes, known as the echo-free zone (EFZ). The cause of this feature is unclear, so far lacking direct evidence for its origin. We compare echoes around the EPICA drill site in Dronning Maud Land, Antarctica, with the dielectric properties, crystal orientation fabrics and optical stratigraphy of the EPICA-DML ice core. We find that echoes disappear in the depth range where the dielectric contrast is blurred, and where the coherency of the layers in the ice core is lost due to disturbances caused by the ice flow. At the drill site, the EFZ onset at ~2100 m marks a boundary, below which the ice core may have experienced flow induced disturbances on various scales. The onset may indicate changing rheology which needs to be accounted for in the modeling of ice sheet dynamics.


2020 ◽  
Author(s):  
Marie G. P. Cavitte ◽  
Duncan A. Young ◽  
Robert Mulvaney ◽  
Catherine Ritz ◽  
Jamin S. Greenbaum ◽  
...  

Abstract. We present an ice-penetrating radar data set which consists of 26 internal reflecting horizons (IRHs) that cover the entire Dome C area of the East Antarctic plateau, the most extensive to date in the region. This data set uses radar surveys collected over the space of 10 years, starting with an airborne international collaboration in 2008 to explore the region, up to the detailed ground based surveys in support of the Beyond EPICA – Oldest Ice (BE-OI) European Consortium. Through direct correlation with the EPICA-DC ice core, we date 19 IRHs that span the past four glacial cycles, from the beginning of the Holocene to over 350 ka. We indirectly date and provide stratigraphic information for seven older IRHs using an 1-D ice flow inverse model, going back to an estimated 700 ka. Depth and age uncertainties are quantified for all IRHs and provided as part of the data set. The IRH data set presented in this study is available at the U.S. Antarctic Program Data Center (USAP-DC) (https://doi.org/10.15784/601411, Cavitte et al., 2020) and represents a contribution to the SCAR AntArchitecture program.


Sign in / Sign up

Export Citation Format

Share Document