scholarly journals Seasonal monitoring of melt and accumulation within the deep percolation zone of the Greenland Ice Sheet and comparison with simulations of regional climate modeling

2018 ◽  
Author(s):  
Achim Heilig ◽  
Olaf Eisen ◽  
Michael MacFerrin ◽  
Marco Tedesco ◽  
Xavier Fettweis

Abstract. Increasing melt over the Greenland ice sheet (GrIS) recorded over the past years has resulted in significant changes of the percolation regime of the ice sheet. It remains unclear whether Greenland's percolation zone will act as meltwater buffer in the near future through gradually filling all pore space or if near-surface refreezing causes the formation of impermeable layers, which provoke lateral runoff. Homogeneous ice layers within perennial firn, as well as near-surface ice layers of several meter thickness are observable in firn cores. Because firn coring is a destructive method, deriving stratigraphic changes in firn and allocation of summer melt events is challenging. To overcome this deficit and provide continuous data for model evaluations on snow and firn density, temporal changes in liquid water content and depths of water infiltration, we installed an upward-looking radar system (upGPR) 3.4 m below the snow surface in May 2016 close to Camp Raven (66.4779° N/46.2856° W) at 2120 m a.s.l. The radar is capable to monitor quasi-continuously changes in snow and firn stratigraphy, which occur above the antennas. For summer 2016, we observed four major melt events, which routed liquid water into various depths beneath the surface. The last event in mid-August resulted in the deepest percolation down to about 2.3 m beneath the surface. Comparisons with simulations from the regional climate model MAR are in very good agreement in terms of seasonal changes in accumulation and timing of onset of melt. However, neither bulk density of near-surface layers nor the amounts of liquid water and percolation depths predicted by MAR correspond with upGPR data. Radar data and records of a nearby thermistor string, in contrast, matched very well, for both, timing and depth of temperature changes and observed water percolations. All four melt events transferred a cumulative mass of 56 kg/m2 into firn beneath the summer surface of 2015. We find that continuous observations of liquid water content, percolation depths and rates for the seasonal mass fluxes are sufficiently accurate to provide valuable information for validation of model approaches and help to develop a better understanding of liquid water retention and percolation in perennial firn.

2018 ◽  
Vol 12 (6) ◽  
pp. 1851-1866 ◽  
Author(s):  
Achim Heilig ◽  
Olaf Eisen ◽  
Michael MacFerrin ◽  
Marco Tedesco ◽  
Xavier Fettweis

Abstract. Increasing melt over the Greenland Ice Sheet (GrIS) recorded over the past several years has resulted in significant changes of the percolation regime of the ice sheet. It remains unclear whether Greenland's percolation zone will act as a meltwater buffer in the near future through gradually filling all pore space or if near-surface refreezing causes the formation of impermeable layers, which provoke lateral runoff. Homogeneous ice layers within perennial firn, as well as near-surface ice layers of several meter thickness have been observed in firn cores. Because firn coring is a destructive method, deriving stratigraphic changes in firn and allocation of summer melt events is challenging. To overcome this deficit and provide continuous data for model evaluations on snow and firn density, temporal changes in liquid water content and depths of water infiltration, we installed an upward-looking radar system (upGPR) 3.4 m below the snow surface in May 2016 close to Camp Raven (66.4779∘ N, 46.2856∘ W) at 2120 m a.s.l. The radar is capable of quasi-continuously monitoring changes in snow and firn stratigraphy, which occur above the antennas. For summer 2016, we observed four major melt events, which routed liquid water into various depths beneath the surface. The last event in mid-August resulted in the deepest percolation down to about 2.3 m beneath the surface. Comparisons with simulations from the regional climate model MAR are in very good agreement in terms of seasonal changes in accumulation and timing of onset of melt. However, neither bulk density of near-surface layers nor the amounts of liquid water and percolation depths predicted by MAR correspond with upGPR data. Radar data and records of a nearby thermistor string, in contrast, matched very well for both timing and depth of temperature changes and observed water percolations. All four melt events transferred a cumulative mass of 56 kg m−2 into firn beneath the summer surface of 2015. We find that continuous observations of liquid water content, percolation depths and rates for the seasonal mass fluxes are sufficiently accurate to provide valuable information for validation of model approaches and help to develop a better understanding of liquid water retention and percolation in perennial firn.


2017 ◽  
Author(s):  
Christian R. Steger ◽  
Carleen H. Reijmer ◽  
Michiel R. van den Broeke

Abstract. Recent studies indicate that the surface mass balance will dominate the Greenland Ice Sheet's (GrIS) contribution to 21st century sea level rise. Consequently, it is crucial to understand the liquid water balance (LWB) of the ice sheet and its response to increasing surface melt. We therefore analyse a firn simulation conducted with SNOWPACK for the GrIS and over the period 1960–2014 with a special focus on the LWB and refreezing. An indirect evaluation of the simulated refreezing climate with GRACE and firn temperature observations indicate a good model performance. Results of the LWB analysis reveal a spatially uniform increase in surface melt during 1990–2014. As a response, refreezing and runoff also indicate positive trends for this period, where refreezing increases with only half the rate of runoff, which implies that the majority of the additional liquid input runs off the ice sheet. However, this pattern is spatially variable as e.g. in the southeastern part of the GrIS, most of the additional liquid input is buffered in the firn layer due to relatively high snowfall rates. The increase in modelled refreezing leads to a general decrease in firn air content and to a substantial increase in near-surface firn temperature in some regions. On the western side of the ice sheet, modelled firn temperature increases are highest in the lower accumulation zone and are primarily caused by the exceptional melt season of 2012. On the eastern side, simulated firn temperature increases more gradually and with an associated upward migration of firn aquifers.


2021 ◽  
Author(s):  
Max Brils ◽  
Peter Kuipers Munneke ◽  
Willem Jan van de Berg ◽  
Achim Heilig ◽  
Baptiste Vandercrux ◽  
...  

<p>Recent studies indicate that a declining surface mass balance will dominate the Greenland Ice Sheet’s (GrIS) contribution to 21<sup>st</sup> century sea level rise. It is therefore crucial to understand the liquid water balance of the ice sheet and its response to increasing temperatures and surface melt if we want to accurately predict future sea level rise. The ice sheet firn layer covers ~90% of the GrIS and provides pore space for storage and refreezing of meltwater. Because of this, the firn layer can retain up to ~45% of the surface meltwater and thus act as an efficient buffer to ice sheet mass loss. However, in a warming climate this buffer capacity of the firn layer is expected to decrease, amplifying meltwater runoff and sea-level rise. Dedicated firn models are used to understand how firn layers evolve and affect runoff. Additionally, firn models are used to estimate the changing thickness of the firn layer, which is necessary in altimetry to convert surface height change into ice sheet mass loss.</p><p>Here, we present the latest version of our firn model IMAU-FDM. With respect to the previous version, changes have been made to the handling of the freshly fallen snow, the densification rate of the firn and the conduction of heat. These changes lead to an improved representation of firn density and temperature. The results have been thoroughly validated using an extensive dataset of density and temperature measurements that we have compiled covering 126 different locations on the GrIS. Meltwater behaviour in the model is validated with upward-looking GPR measurements at Dye-2. Lastly, we present an in-depth look at the evolution firn characteristics at some typical locations in Greenland.</p><p>Dedicated, stand-alone firn models offer various benefits to using a regional climate model with an embedded firn model. Firstly, the vertical resolution for buried snow and ice layers can be larger, improving accuracy. Secondly, a stand-alone firn model allows for spinning up the model to a more accurate equilibrium state. And thirdly, a stand-alone model is more cost- and time-effective to use. Firn models are increasingly capable of simulating the firn layer, but areas with large amounts of melt still pose the greatest challenge.</p>


2020 ◽  
Author(s):  
Samira Samimi ◽  
Shawn Marshall ◽  
Michael McFerrin

<p>Mass loss from the Greenland Ice Sheet has increased in recent decades due to significant increases in surface melt and runoff. The fraction of summer melt retains as a liquid water or refreezes as it percolates into the underlying cold firn, acting as a buffer to the summer runoff. There are challenges to quantifying both infiltration and refreezing of meltwater in this complex heterogeneous cold firn and to understand the spatial variability of these processes. In this study we present continuous in situ measurements of near-surface temperature and dielectric permittivity, a proxy for volumetric water content, using TDR (Time Domain Reflectometry) methods in the percolation zone of the southern Greenland Ice Sheet. We established two observation sites near Dye 2 in April, 2016, excavating firn pits to depths of 2.2 and 5.3 m. The two sites are 650 m apart to quantify the percolation and refreezing of meltwater and to observe the spatial variability of these processes through summer 2016. Thermistor arrays were used to track the thermal signature of meltwater penetration in firn, through the effects of latent heat release when meltwater refreezes. Through the addition of TDR probes, we attempt to directly quantify meltwater volume as well as hydraulic conductivity of the near-surface snow and firn. An automatic weather station (AWS) configured for surface energy balance monitoring was also installed. AWS data were used to calculate the surface energy balance and model meltwater production. The melting front, characterized by 0°C conditions and direct evidence of liquid water, penetrated to a depth of between 1.8 and 2.1 m in summer 2016; at depths of 2.1 m and greater, temperatures remained below 0°C, there was no evidence of abrupt warming (i.e. latent heat release), and dielectric permittivities remained at their background levels. Meltwater penetrated several thick ice layers, but not until temperatures reached the melting point at these depths, implying that ice layers may transition to a permeable ‘slush’ layer, given enough conductive and latent heating, permitting progressive penetration of meltwater to depth. Firn temperatures (sub-zero conditions below ~2 m) appear to have been the main barrier to deep penetration of meltwater during summer 2016.</p>


2017 ◽  
Vol 63 (241) ◽  
pp. 847-853 ◽  
Author(s):  
CHRISTINE CHEN ◽  
IAN M. HOWAT ◽  
SANTIAGO DE LA PEÑA

AbstractWe examine repeat surface altimetry and radio echo observations of two supraglacial lakes in the percolation zone of the Greenland ice sheet to investigate the changes in firn conditions leading to lake formation and implications for meltwater storage within firn. Both lakes formed in 2011, when an anomalously high melt season was followed by low winter accumulation, resulting in reduced infiltration and storage in the near surface. The lakes expanded during the 2012 record melt season and retained liquid meltwater through the following winter. The lakes then contracted, with one lake slowly draining and refreezing and another rapidly draining to the subsurface. The lack of observable change in firn conditions surrounding the lakes indicates increased run-off in the near surface firn, likely along low-permeability ice layers formed during the previous melt seasons. This implies a reduced ability of the firn to absorb increased meltwater.


2013 ◽  
Vol 7 (2) ◽  
pp. 469-489 ◽  
Author(s):  
X. Fettweis ◽  
B. Franco ◽  
M. Tedesco ◽  
J. H. van Angelen ◽  
J. T. M. Lenaerts ◽  
...  

Abstract. To estimate the sea level rise (SLR) originating from changes in surface mass balance (SMB) of the Greenland ice sheet (GrIS), we present 21st century climate projections obtained with the regional climate model MAR (Modèle Atmosphérique Régional), forced by output of three CMIP5 (Coupled Model Intercomparison Project Phase 5) general circulation models (GCMs). Our results indicate that in a warmer climate, mass gain from increased winter snowfall over the GrIS does not compensate mass loss through increased meltwater run-off in summer. Despite the large spread in the projected near-surface warming, all the MAR projections show similar non-linear increase of GrIS surface melt volume because no change is projected in the general atmospheric circulation over Greenland. By coarsely estimating the GrIS SMB changes from GCM output, we show that the uncertainty from the GCM-based forcing represents about half of the projected SMB changes. In 2100, the CMIP5 ensemble mean projects a GrIS SMB decrease equivalent to a mean SLR of +4 ± 2 cm and +9 ± 4 cm for the RCP (Representative Concentration Pathways) 4.5 and RCP 8.5 scenarios respectively. These estimates do not consider the positive melt–elevation feedback, although sensitivity experiments using perturbed ice sheet topographies consistent with the projected SMB changes demonstrate that this is a significant feedback, and highlight the importance of coupling regional climate models to an ice sheet model. Such a coupling will allow the assessment of future response of both surface processes and ice-dynamic changes to rising temperatures, as well as their mutual feedbacks.


2010 ◽  
Vol 4 (4) ◽  
pp. 1967-2011 ◽  
Author(s):  
F. Techel ◽  
C. Pielmeier

Abstract. Information on the amount and distribution of liquid water in the snowpack is important for forecasting wet snow avalanches and predicting melt-water run-off. Considerable spatial and temporal variations of snowpack wetness exist. Currently, available information relies mostly on point observations. Often, the snow wetness is estimated manually using a hand test. However, quantitative measures are also applied. We compare the hand test to quantitative measurements and investigate temporal and small-scale spatial aspects of the snowpack wetness. For this, the liquid water content was measured using dielectric methods, with the Snow Fork and Denoth wetness instrument in the Swiss Alps, mostly above tree-line. More than 12 000 water content measurements were observed on 30 days in 85 locations. The qualitative hand test provides an indication of snowpack wetness, although snowpack wetness is often over-estimated and quantitative water content measurements are more reliable. If the measured water content is very low, it is unclear if the snow is dry or contains small quantities of liquid water. In particular during the initial melt-phase, when the snowpack is only partially wet, it is important to consider spatial aspects when interpreting point observations. One measurement taken at a certain measurement depth may significantly deviate in 10–20% of the cases from snowpack wetness in the surrounding snow. Not surprisingly, diurnal changes in snowpack wetness are significant in layers close to the snow surface. At depth, changes were noted within the course of a day. From a single vertical profile, it was often unclear if these changes were due to the heterogeneous nature of water infiltration. Based on our observations, we propose to repeat three measurements at horizontal distances greater than 50 cm. This approach provides representative snow wetness information for horizontal distances up to 5 m. Further, we suggest a simplified classification scheme of snowpack wetness by introducing five wetness types of the snowpack incorporating both vertical and horizontal liquid water content distribution.


2019 ◽  
Author(s):  
Gabriel Lewis ◽  
Erich Osterberg ◽  
Robert Hawley ◽  
Hans Peter Marshall ◽  
Tate Meehan ◽  
...  

Abstract. The mass balance of the Greenland Ice Sheet (GrIS) in a warming climate is of critical interest to scientists and the general public in the context of future sea-level rise. Increased melting in the GrIS percolation zone due to atmospheric warming over the past several decades has led to increased mass loss at lower elevations. Previous studies have hypothesized that this warming is accompanied by a precipitation increase, as would be expected from the Clausius-Clapeyron relationship, negating some of the melt-induced mass loss throughout the Western GrIS. This study tests that hypothesis by calculating snow accumulation rates and trends across the Western GrIS percolation zone, providing new critical accumulation estimates in regions with sparse and/or dated in situ data for calibration of future regional climate models. We present accumulation records from sixteen 22–32 m long firn cores and 4436 km of ground penetrating-radar, covering the past 20–60 years of accumulation, collected across the Western GrIS percolation zone as part of the Greenland Traverse for Accumulation and Climate Studies (GreenTrACS) project. Trends from both radar and firn cores, as well as commonly used regional climate models, show decreasing accumulation and precipitation over the 1996–2016 period, which we attribute to shifting storm-tracks related to stronger atmospheric summer blocking over Greenland. Changes in atmospheric circulation over the past 20 years, specifically anomalously high summertime blocking, have reduced GrIS surface mass balance through both an increase in surface melting and a decrease in accumulation.


2016 ◽  
Author(s):  
Xavier Fettweis ◽  
Jason E. Box ◽  
Cécile Agosta ◽  
Charles Amory ◽  
Christoph Kittel ◽  
...  

Abstract. With the aim of studying the recent Greenland Ice Sheet (GrIS) Surface Mass Balance (SMB) decrease with respect to the last century, we have forced the regional climate MAR model (version 3.5.2) with the ERA-Interim (1979–2015), ERA-40 (1958–2001), NCEP-NCARv1 (1948–2015), NCEP-NCARv2 (1979–2015), JRA-55 (1958–2014), 20CRv2(c) (1900–2014) and ERA-20C (1900–2010) reanalysis. While all of these forcing products are reanalyses assumed to represent the same climate, they produce significant differences in the MAR simulated SMB over their common period. A temperature adjustment of +1 °C (respectively −1 °C) improved the accuracy of MAR boundary conditions from both ERA-20C and 20CRv2 reanalyses given that ERA-20C (resp. 20CRv2) is 1 °C colder (resp. warmer) over Greenland than ERA-Interim over 1980–2010. Comparisons with daily PROMICE near-surface observations validated these adjustments. Comparisons with SMB measurements from PROMICE, ice cores and satellite derived melt extent reveal the most accurate forcing data sets for simulating the GrIS SMB to be ERA-Interim and NCEP-NCARv1. However, some biases remain in MAR suggesting that some improvements need still to be done in its cloudiness and radiative scheme as well as in the representation of the bare ice albedo. Results from all forcing simulations indicate: (i) the period 1961–1990 commonly chosen as a stable reference period for Greenland SMB and ice dynamics is actually a period when the SMB was anomalously positive (~ +10 %) compared to the last 120 years; (ii) SMB has decreased significantly after this reference period due to increasing and unprecedented melt reaching the highest rates in the 120 year common period; (iii) before 1960, both ERA-20C and 20CRv2 forced MAR simulations suggest a significant precipitation increase over 1900–1950 although this increase could be the result of an artefact in reanalysis not enough constrained by observations during this period. These MAR-based SMB and accumulation reconstructions are however quite similar to those from Box (2013) after 1930, which confirms the Box (2013)'s stationarity assumption of SMB over the last century. Finally, the ERA-20C forced simulation only suggests that SMB during the 1920–1930 warm period over Greenland was comparable to the SMB of the 2000's due to both higher melt and lower precipitation than normal.


2012 ◽  
Vol 6 (3) ◽  
pp. 1611-1635 ◽  
Author(s):  
J. T. M. Lenaerts ◽  
M. R. van den Broeke ◽  
J. H. van Angelen ◽  
E. van Meijgaard ◽  
S. J. Déry

Abstract. This paper presents the drifting snow climate of the Greenland ice sheet, using output from a high-resolution (~11 km) regional climate model (RACMO2). Because reliable direct observations of drifting snow do not exist, we evaluate the modeled near-surface climate instead, using Automatic Weather Station (AWS) observations from the K-transect and find that RACMO2 realistically simulates near-surface wind speed and relative humidity, two variables that are important for drifting snow. Integrated over the ice sheet, drifting snow sublimation (SUds) equals 24 ± 3 Gt yr−1, and is significantly larger than surface sublimation (SUs, 16 ± 2 Gt yr−1). SUds strongly varies between seasons, and is only important in winter, when surface sublimation and runoff are small. A rapid transition exists between the winter season, when snowfall and SUds are important, and the summer season, when snowmelt is significant, which increases surface snow density and thereby limits drifting snow processes. Drifting snow erosion (ERds) is only important on a regional scale. In recent decades, following decreasing wind speed and rising near-surface temperatures, SUds exhibits a negative trend (0.1 ± 0.1 Gt yr−1), which is compensated by an increase in SUs of similar magnitude.


Sign in / Sign up

Export Citation Format

Share Document