precipitation decrease
Recently Published Documents


TOTAL DOCUMENTS

107
(FIVE YEARS 46)

H-INDEX

16
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Vadim Yurevich Grigorev ◽  
Maxim A. Kharlamov ◽  
Natalia K. Semenova ◽  
Sergey R. Chalov ◽  
Alexey A. Sazonov

Abstract Water level and distribution of dissolved and suspended matter of Lake Baikal are strongly affected by river inflow during rain-driven floods. This study analyses river flow changes at 44 streamflow gauges and related precipitation, evaporation, potential evaporation and soil moisture obtained from ERA5-Land dataset. Based on Sen-Slope trend estimator, Mann–Kendall non-parametric test, and using dominant analyses we estimated influence of meteorological parameters on river flow during 1979-2019. Using ridge-regression we found significant relationships between precipitation elasticity of river flow and catchments features. Half of the gauges in eastern part of Selenga river basin showed a significant decreasing trend of average and maximum river flow (up to -2.9%/year). No changes in central volume date of flood flow have been found. A reduction in rainfall amounts explains more than 60% of runoff decline. Decrease in evaporation is observed where precipitation decrease is 0.8%/y or more. Catchments where the precipitation trends are not as substantial are associated with increasing evaporation as a result of the increase of potential evaporation. Negative trends of precipitation are accompanied by negative trends of soil moisture. Finally, the study reveals sensitivity of the catchments with steep slopes in humid area to precipitation change.


2021 ◽  
pp. SP517-2020-212
Author(s):  
Pascal Goderniaux ◽  
Philippe Orban ◽  
Alain Rorive ◽  
Serge Brouyère ◽  
Alain Dassargues

AbstractIn Southern Belgium, 23% of abstracted groundwater volumes are from chalk aquifers which represent strategic resources for the region. Due to their specific nature, these chalk aquifers often exhibit singular behaviour and require specific analysis. The quantitative evolution of these groundwater resources is analysed for the Mons Basin and Hesbaye chalk aquifers as a function of past evolution, in the short and long terms. Groundwater level time series exhibit decreases when analysed over different periods. This is particularly visible for the Hesbaye chalk aquifer when comparing the 1960-1990 and 1990-2020 periods. Such decreases are associated to observed temperature increase and a precipitation decrease, inducing a decrease of aquifer recharge, and a probable increase of groundwater abstraction in the adjacent catchment. Past evolution is also discussed considering recent winter and summer drought events. The aquifers exhibit long delays in response to recharge events, particularly where the thickness of the partially saturated zone plays a crucial role in observed delays. Regarding future evolution, simulations of the impact of climate changes using medium-high emission scenarios indicate a probable decrease of the groundwater levels over the Hesbaye chalk aquifer.


Author(s):  
L. V. Dotsenko ◽  
V. I. Chorna ◽  
Yu. I. Hrytsan ◽  
N. V. Voroshylova ◽  
V. V. Katsevych

Сlimatic factors play the most important role in the plant associations formation. Sunlight is one of the leading factors that determine the appearance of a particular community and very often plays the limiting factor role. In the conditions of the Steppe Dnipro Region, its limiting role can be expressed only in its excess. The great majority of autochthonous steppe flora plant species has strongly pronounced adaptations to excessive solar insolation. With the development of forest biogeocenology and steppe forestry, more and more attention is paid to the issues of forest climatology. It is shown that climatic factors have an imperative effect on the formation of soils, plant associations, fauna and ecosystems in general. Artificial plantations consisting of fast-growing hardwoods, such as Robinia pseudoacacia, have been studied. The complex of abiotic factors in robinia plantations and in open areas has its own characteristics. The processes of reflection, transformation and accumulation of solar energy in tree plantations have a slightly different character than in forest-free areas. In the Dnipropetrovsk region, the populations of Robinia pseudoacacia are represented mainly by young plants that have already entered the phase of active fruiting. No plants older than 100 years were found in the populations. Thus, the price spectrum of the age composition of the population of Robinia pseudoacacia in the Dnipropetrovsk region has a pronounced left-sided character, ie shifted towards young individuals that are actively fruiting. This indicates that the processes of expansion of Robinia pseudoacacia to natural biogeocenoses will be actively continued. Despite the fact that this breed has a number of positive qualities (excellent medonis, root mycorrhiza with azotobacter, high gas resistance, etc.), the processes of uncontrolled active settlement of this species is a matter of serious concern. This breed is capable of rapid spread and disruption of successional processes occurring in the area. In the conditions of the forecasted climate changes towards temperature increase and precipitation decrease this breed receives more and more advantages.


The Holocene ◽  
2021 ◽  
pp. 095968362110191
Author(s):  
Maša Surić ◽  
Andrea Columbu ◽  
Robert Lončarić ◽  
Petra Bajo ◽  
Neven Bočić ◽  
...  

We present the first stable isotope (δ13C and δ18O) speleothem record from continental Croatia retrieved from two coeval stalagmites from Nova Grgosova Cave. U-Th dates constrain the stalagmite growth history from 10 ka to the present, revealing coeval growth between 7.8 and 5.6 ka. We interpret δ18O as an autumn/winter hydrological proxy related to changes of vapor source, precipitation amount, and/or seasonal rainfall distribution, while δ13C predominantly responds to spring/summer vegetation status and soil microbial activity. We identify several centennial to millennial-scale hydroclimate oscillations during this period that result from multiple forcing factors. Along with amount and source effect, it appears that some centennial variations were governed also by seasonal moisture balance. From 9.2 to 8.8 ka BP, the local environmental setting was characterized by enhanced vegetation activity, while during the 8.2 ka event the main feature was a change in precipitation seasonality. The most prominent change, identified in both δ13C records, is a sudden decline of vegetation and soil biological activity around 7.4 ka, indicating a precipitation decrease at a time of maximum plant growth in spring and summer and likely also reduced precipitation in autumn and winter. Although small in magnitude in these speleothems, a peak in δ18O and δ13C values at 4.3–4.1 ka suggests that both summer and winter conditions were substantially drier during the 4.2 ka event, in accordance with increased Mediterranean aridity and consistent with other global climate changes reported at this time. Compared to the present North Atlantic Oscillation (NAO) influence, we assume that millennial Holocene NAO-like variations were persistent through the Holocene via their effect on modifying local/regional air temperature, vapor origin, and inter- and intrannual precipitation distribution. Anthropogenic deforestation, which was the first major human impact on the environment during the Neolithic agricultural revolution, is excluded as a leading factor in δ13C variability since the first sedentary settlements were established further to the east in more arable locations along river valleys. However, the impact of intensive mining around the cave site during the last millennium is evident, with substantial deforestation driving an increase in δ13C.


2021 ◽  
Author(s):  
Victoria Sinclair ◽  
Jennifer Catto

<p>Extra-tropical cyclones constitute a large part of the circulation in the mid-latitudes and can lead to high impact weather. Therefore, it is beneficial to society to determine how these storms and their associated weather may change in the future. We focus on precipitation associated with extra-tropical cyclones (ETCs) and first aim to determine how the relationship between dynamical measures (e.g. maximum relative vorticity) of cyclone intensity and ETC related precipitation will response to climate change. Secondly, because not all ETCs are the same, we investigate whether the relationship between ETC precipitation and ETC intensity depends on the type of cyclone. Finally, we examine whether certain types of ETCs, in terms of their precipitation patterns, are likely to become more or less common in the future. We address these questions using aqua-planet simulations performed using an atmosphere-only model (OpenIFS) with fixed sea surface temperatures (SSTs). The simulations are run at T255 resolution (~ 80 km) and are 10 years long which generates a very large sample size of ETCs (> 14,000). The three simulations differ only in terms of the specific SST distribution: a control simulation is performed with the well-known “QObs” SST distributions, the second simulation has a uniform warming of 4K applied everywhere, and the third simulation is a polar amplification experiment with a 5K warming poleward of 45 degrees. In each experiment, all ETCs are objectively identified and tracked. Different types of cyclones are identified by applying k-means clustering to the precipitation pattern within a 12-degree radius of the cyclone centre. In all three experiments, more dynamically intense ETCs have more precipitation associated with them but there is considerable spread. Uniform warming strengthens this relationship and hence a ETC of a certain dynamical intensity will have more precipitation associated with it in a warmer climate. Clustering identifies 4 distinct types of ETCs in terms of their precipitation patterns: ETCs with most precipitation associated with the warm front; ETCs dominated by cold front precipitation; ETCs dominated by cyclone-centred precipitation; ETCs with very little precipitation. All 4 cyclone types appear in each experiment. Uniform warming causes a notable increase in the number of ETCs with precipitation concentrated on the warm front and a decrease in the number of ETCs with weak precipitation. In contrast, polar warming causes a large increase in the number of ETCs with weak precipitation and ETCs dominated by cold front precipitation decrease in number. These results, and others, will be presented along with dynamical interpretations.</p>


2021 ◽  
Vol 13 (7) ◽  
pp. 3602
Author(s):  
Jiri Chlachula

Extensive geographic areas of the world show a long-term atmospheric moisture deficit. Desertification of Rajasthan is concurrent with the strengthened weather extremality and mean annual air temperature (MAAT) rise over the western part of the Indian subcontinent. The present landscape aridification due to the precipitation decrease and reinforced windiness generates surface-cover dryness, aeolian erosion with a mass sediment transfer, salinity of excessively irrigated lands and groundwater depletion; altogether these pose major geo-environmental threats and settlement risks of the expanding Thar Desert. Livestock-overgrazing of sparse-vegetation contributes to ecological pressure to the fragile wasteland ecosystems with approximately three-quarters of the countryside affected to a certain extent by degradation and >50% exposed to wind erosion. Sand dune stabilisation by the drought-adapted tree plantation, the regional hydrology network regulation and the arid-land farming based on new xerophytic cultigens are the key land-use and mitigation strategies. Specific geomorphic palaeosettings predetermined patterned adaptive forms of the ancient desert inhabitation. Geo- and eco-tourism contributes to the arid-zone socioeconomic sustainability with regard to the rich natural and cultural heritage of the area. This study outlines the main effects of the current climate variations on the pristine and occupied lands of western Rajasthan, and the past and present relief transformations, and reviews the modern anthropogenic responses to desertification.


2021 ◽  
Author(s):  
Marion Lestienne ◽  
Boris Vannière ◽  
Thomas Curt ◽  
Isabelle Jouffroy-Bapicot ◽  
Christelle Hély

Abstract In the Mediterranean basin, Corsica (French island) harbours among the best-preserved Mediterranean forest ecosystems and its high biodiversity could be threatened by the climate and disturbance-regime changes due to the global warming. This study aims i) to estimate the future climate-related fire hazard in Corsica for the current century (2020–2100) based on two RCP scenarios (RCP4.5 and RCP8.5), and ii) to compare the predicted trends with the entire Holocene period for which fire hazard has previously been assessed. An ensemble of future climate simulations from two IPCC RCP scenarios has been used to compute the Monthly Drought Code (MDC) and the Fire Season Length (FSL) and to assess the level of fire hazard assessment. Here, we show that the MDC and the FSL would both strongly increase over the next decades due to the combined effect of temperature increase and precipitation decrease in the Corsica region. Moreover, the maximum Holocene FLS (7000 to 9000 years ago), will be reached (and even exceeded depending upon the scenario) after 2040. For the first time in the Holocene, we may be confronted to an increase in the number of fire-prone months driven by climate combined with many human-caused ignitions. This combination should increase the burned area from 15–140%. For the next 30 years, the game seems to be already played as both RCP scenarios resulted in similar increase in fire hazard intensity and duration. It is thus mandatory to reconsider fire-management and fire-prevention policy to mitigate the future fire risk, and its catastrophic consequences for ecosystems, population, and economy.


2021 ◽  
Author(s):  
Jorge Sebastian Moraga ◽  
Nadav Peleg ◽  
Simone Fatichi ◽  
Peter Molnar ◽  
Paolo Burlando

<p>Hydrological processes in mountainous catchments will be subject to climate change on all scales, and their response is expected to vary considerably in space. Typical hydrological studies, which use coarse climate data inputs obtained from General Circulation Models (GCM) and Regional Climate Models (RCM), focus mostly on statistics at the outlet of the catchments, overlooking the effects within the catchments. Furthermore, the role of uncertainty, especially originated from natural climate variability, is rarely analyzed. In this work, we quantified the impacts of climate change on hydrological components and determined the sources of uncertainties in the projections for two mostly natural Swiss alpine catchments: Kleine Emme and Thur. Using a two-dimensional weather generator, AWE-GEN-2d, and based on nine different GCM-RCM model chains, we generated high-resolution (2 km, 1 hour) ensembles of gridded climate inputs until the end of the 21<sup>st</sup> century. The simulated variables were subsequently used as inputs into the fully distributed hydrological model Topkapi-ETH to estimate the changes in hydrological statistics at 100-m and hourly resolutions. Increased temperatures (by 4°C, on average) and changes in precipitation (decrease over high elevations by up to 10%, and increase at the lower elevation by up to 15%) results in increased evapotranspiration rates in the order of 10%, up to a 50% snowmelt, and drier soil conditions. These changes translate into important shifts in streamflow seasonality at the outlet of the catchments, with a significant increase during the winter months (up to 40%) and a reduction during the summer (up to 30%). Analysis at the sub-catchment scale reveals elevation-dependent hydrological responses: mean annual streamflow, as well as high and low flow extremes, are projected to decrease in the uppermost sub-catchments and increase in the lower ones. Furthermore, we computed the uncertainty of the estimations and compared them to the magnitude of the change signal. Although the signal-to-noise-ratio of extreme streamflow for most sub-catchments is low (below 0.5) there is a clear elevation dependency. In every case, internal climate variability (as opposed to climate model uncertainty) explains most of the uncertainty, averaging 85% for maximum and minimum flows, and 60% for mean flows. The results highlight the importance of modelling the distributed impacts of climate change on mountainous catchments, and of taking into account the role of internal climate variability in hydrological projections.</p>


2021 ◽  
Author(s):  
Claudio Bravo ◽  
Pablo Paredes ◽  
Nicolás Donoso ◽  
Sebastián Cisternas

<p>Subtropical Andean glaciers are losing mass in response to the long-term atmospheric warming and precipitation decrease. Extreme events as heat waves, however, seems to potentially play a key role in the sustained ice loss detected in the last decades. Increased frequency of heat wave events have been detected in the central valley of Chile, however, the occurrence and impact of these events on the Andean cryosphere remain unknown. The main reason is associated with the lack of meteorological observations at higher elevations in the Andes. </p><p>In filling this gap, we present an assessment of the occurrence of heat waves in the glacierized Río Olivares basin (33°S), which comprise an elevation range between ~1500  and ~6000 m a.s.l. and where a strong ice loss has been detected during the last decades. The main aim is to analyse the correspondence of heat waves events occurred with those in the nearby city of Santiago located in the central valley of Chile and to assess the potential impacts of these events on the glaciers located in this basin. Using meteorological observations in Río Olivares basin and in Santiago between the years 2013 and 2020, heat wave events were determined. We estimated the heat wave events using the monthly 90th percentile and the adjustment of a harmonic function. An additional adjustment relative to the climate period 1981-2010 was also introduced. The results determined 66 events in the Río Olivares basin while in Santiago were 53 events. These results reveal high spatial variability in the occurrences of heat waves as only 49% of the events in Santiago were detected in the Río Olivares basin. Ongoing work is focused on analysing the impacts of these events over the glaciers of the basin. Here, through the use of the computed basin-scale 0°C isotherm, the relation between glacier area under melt (i.e. glacier area located below the 0°C isotherm) and the heat wave events will be shown. The findings of this works reinforce the need for more observational efforts over high elevations in the Andes in order to robustly assess and at a basin scale, the impact of extreme events on the Andean cryosphere.</p>


2021 ◽  
Author(s):  
Bruno Montibeller ◽  
Jaak Jaagus ◽  
Ülo Mander ◽  
Evelyn Uuemaa

<p>Shifts in climate driven by anthropogenic land use and land cover change are expected to alter<strong> </strong>various<strong> </strong>land–atmosphere interactions. Evapotranspiration (ET) is one of these processes and plays a fundamental role in the hydrologic cycle. Using gridded reanalysis and remote sensing data, we investigated the spatiotemporal trends of precipitation, temperature, and ET for croplands and forest areas in the Baltic states where these land cover type had not changed from 2000 to 2018. We focused on ET but investigated the spatiotemporal trends for the three variables at monthly, seasonal, and annual time scales during this period to quantify trade-offs among months and seasons. We used the Mann-Kendall test and Sen’s slope to calculate the trends and rate of change for the three variables. Although precipitation showed fewer statistically significant increasing and decreasing trends due to its high variability, temperature showed only increasing trends in all time scales. The increasing trends were concentrated in late spring (May, +0.14ºC per year), summer (June and August, +0.10ºC), and early autumn (September, +0.13ºC). For unchanged forest and cropland areas, we found no statistically significant ET trends. However, Sen’s slope indicated increasing ET in April, May, June, and September for forest areas and in May and June for cropland. Our results indicate that during the study period, the temperature changes may have lengthened the growing season, which affected the ET patterns of forest and cropland areas. The results also provide important insights into the regional water balance, specially for critical periods where the ET rates increase while precipitation decrease (May, June. and July). Moreover, our study also complements the findings of other studies over the Baltic states.</p>


Sign in / Sign up

Export Citation Format

Share Document