Re: RC2: 'Review of "Improving gridded snow water equivalent products in British Columbia, Canada: multi-source data fusion by neural network models" by Snauffer et al.' by Anonymous Referee #2 on 14 Aug 2017

2017 ◽  
Author(s):  
Andrew Snauffer
2018 ◽  
Vol 12 (3) ◽  
pp. 891-905 ◽  
Author(s):  
Andrew M. Snauffer ◽  
William W. Hsieh ◽  
Alex J. Cannon ◽  
Markus A. Schnorbus

Abstract. Estimates of surface snow water equivalent (SWE) in mixed alpine environments with seasonal melts are particularly difficult in areas of high vegetation density, topographic relief, and snow accumulations. These three confounding factors dominate much of the province of British Columbia (BC), Canada. An artificial neural network (ANN) was created using as predictors six gridded SWE products previously evaluated for BC. Relevant spatiotemporal covariates were also included as predictors, and observations from manual snow surveys at stations located throughout BC were used as target data. Mean absolute errors (MAEs) and interannual correlations for April surveys were found using cross-validation. The ANN using the three best-performing SWE products (ANN3) had the lowest mean station MAE across the province. ANN3 outperformed each product as well as product means and multiple linear regression (MLR) models in all of BC's five physiographic regions except for the BC Plains. Subsequent comparisons with predictions generated by the Variable Infiltration Capacity (VIC) hydrologic model found ANN3 to better estimate SWE over the VIC domain and within most regions. The superior performance of ANN3 over the individual products, product means, MLR, and VIC was found to be statistically significant across the province.


2017 ◽  
Author(s):  
Andrew Snauffer ◽  
William Hsieh ◽  
Alex Cannon ◽  
Markus Schnorbus

Abstract. Estimates of surface snow water equivalent (SWE) in alpine regions with seasonal melts are particularly difficult in areas of high vegetation density, topographic relief and snow accumulations. These three confounding factors dominate much of the province of British Columbia (BC), Canada. An artificial neural network (ANN) was created using as predictors six gridded SWE products previously evaluated for BC: ERA-Interim/Land, GLDAS-2, MERRA, MERRA-Land, GlobSnow and ERA-Interim. Relevant spatiotemporal covariates including survey date, year, latitude, longitude, elevation and grid cell elevation differences were also included as predictors, and observations from manual snow surveys at stations located throughout BC were used as target data. Mean absolute errors (MAEs) and correlations for April surveys were found using cross validation. The ANN using the three best performing SWE products (ANN3) had the lowest mean station MAE across the entire province, improving on the performance of individual products by an average of 53 %. Mean station MAEs and April survey correlations were also found for each of BC’s five physiographic regions. ANN3 outperformed each product as well as product means and multiple linear regression (MLR) models in all regions except for the BC Plains, which has relatively few stations and much lower accumulations than other regions. Subsequent comparisons of the ANN results with predictions generated by the Variable Infiltration Capacity (VIC) hydrologic model found ANN3 to be superior over the entire VIC domain and within most physiographic regions. The superior performance of the ANN over individual products, product means, MLR and VIC was found to be statistically significant across the province.


2020 ◽  
Vol 5 ◽  
pp. 140-147 ◽  
Author(s):  
T.N. Aleksandrova ◽  
◽  
E.K. Ushakov ◽  
A.V. Orlova ◽  
◽  
...  

The neural network models series used in the development of an aggregated digital twin of equipment as a cyber-physical system are presented. The twins of machining accuracy, chip formation and tool wear are examined in detail. On their basis, systems for stabilization of the chip formation process during cutting and diagnose of the cutting too wear are developed. Keywords cyberphysical system; neural network model of equipment; big data, digital twin of the chip formation; digital twin of the tool wear; digital twin of nanostructured coating choice


Sign in / Sign up

Export Citation Format

Share Document