scholarly journals Seasonal timeline for snow-covered sea ice processes in Nunavik's Deception Bay from TerraSAR-X and time-lapse photography

2019 ◽  
Author(s):  
Sophie Dufour-Beauséjour ◽  
Anna Wendleder ◽  
Yves Gauthier ◽  
Monique Bernier ◽  
Jimmy Poulin ◽  
...  

Abstract. Inuit have reported greater inter-annual variability in seasonal sea ice conditions. For Deception Bay (Nunavik), an area prized for seal and caribou hunting, an increase in solid precipitation and a shorter snow cover period is expected in the near future. In this context, and considering ice-breaking transport in the fjord by mining companies, we monitored sea ice in the area for three seasons of ice between 2015 and 2018. This article presents a case study for the combined use of TerraSAR- X and time-lapse photography time-series in order to monitor snow-covered sea ice seasonal processes. The X-band median backscattering is shown to reproduce the seasonal evolution expected from C-band data. Two different freeze-up and breakup processes are characterized. New X-band backscattering values from newly formed ice types are reported. The monitoring approach presented in this article has the potential to be applied in other remote locations, and processes outlined here may inform our understanding of other fjords or bays where ice-breakers transit.

2020 ◽  
Vol 14 (5) ◽  
pp. 1595-1609 ◽  
Author(s):  
Sophie Dufour-Beauséjour ◽  
Anna Wendleder ◽  
Yves Gauthier ◽  
Monique Bernier ◽  
Jimmy Poulin ◽  
...  

Abstract. This article presents a case study for the combined use of TerraSAR-X and time-lapse photography time series in order to monitor seasonal sea ice processes in Nunavik's Deception Bay. This area is at the confluence of land use by local Inuit, ice-breaking transport by the mining industry, and climate change. Indeed, Inuit have reported greater interannual variability in seasonal sea ice conditions, including later freeze-up and earlier breakup. Time series covering 2015 to 2018 were acquired for each data source: TerraSAR-X images were acquired every 11 d, and photographs were acquired hourly during the day. We used the combination of the two time series to document spatiotemporal aspects of freeze-up and breakup processes. We also report new X-band backscattering values over newly formed sea ice types. The TerraSAR-X time series further show potential for melt and pond onset.


2018 ◽  
Vol 222 ◽  
pp. 406-420 ◽  
Author(s):  
Denizcan Köseoğlu ◽  
Simon T. Belt ◽  
Lukas Smik ◽  
Haoyi Yao ◽  
Giuliana Panieri ◽  
...  

2019 ◽  
Author(s):  
Sophie Dufour-Beauséjour ◽  
Anna Wendleder ◽  
Yves Gauthier ◽  
Monique Bernier ◽  
Jimmy Poulin ◽  
...  

2004 ◽  
Vol 22 (6) ◽  
pp. 1875-1884 ◽  
Author(s):  
P. Dalin ◽  
S. Kirkwood ◽  
A. Moström ◽  
K. Stebel ◽  
P. Hoffmann ◽  
...  

Abstract. We present a case study of a noctilucent cloud (NLC) display appearing on 10-11 August 2000 over Northern Sweden. Clear wave structures were visible in the clouds and time-lapse photography was used to derive the parameters characterising the gravity waves which could account for the observed NLC modulation. Using two nearby atmospheric radars, the Esrange MST Radar data and Andoya MF radar, we have identified gravity waves propagating upward from the upper stratosphere to NLC altitudes. The wave parameters derived from the radar measurements support the suggestion that gravity waves are responsible for the observed complex wave dynamics in the NLC.


Polar Record ◽  
2000 ◽  
Vol 36 (199) ◽  
pp. 335-344 ◽  
Author(s):  
Vitali Yu. Alexandrov ◽  
Stein Sandven ◽  
Ola M. Johannessen ◽  
Lasse H. Pettersson ◽  
Øyvind Dalen

AbstractThe results are presented of the first winter ice navigation demonstration, using synthetic aperture radar (SAR) images from the Canadian satellite RADARSAT, onboard the nuclear icebreaker Sovetskiy Soyuz in the Kara Sea region in April–May 1998. While ERS SAR data only could cover part of the sea ice in this large area, the demonstration showed that RADARSAT ScanSAR images with 100 m pixel size could be used to map all relevant ice areas with a few 500 × 500 km scenes. SAR images transferred onboard icebreakers in near real time offer an excellent possibility to select optimal sailing routes in difficult ice conditions such as those that were encountered by this expedition. SAR images were also used for planning of operations prior to the expedition. This study compares sub-satellite sea-ice observations with RADARSAT SAR as well as Okean side-looking radar (SLR) signatures of the major ice types and features found in the Kara Sea during winter. Wide-swath SAR images will become available from several new satellites in the near future, such as Envisat, scheduled in 2001, and RADARSAT-2, in 2002. Satellite SAR images will therefore play an increasingly important role in operational ice monitoring both in the Northern Sea Route and in other ice areas.


2019 ◽  
Author(s):  
Marco Bongio ◽  
Ali Nadir Arslan ◽  
Cemal Melih Tanis ◽  
Carlo De Michele

Abstract. We explored the potentiality of time-lapse photography method to estimate the snow depth in boreal forested and alpine regions. Historically, the snow depth has been measured manually by rulers or snowboards, with a temporal resolution of once per day, and a time-consuming activity. In the last decades, ultrasonic and/or optical sensors have been developed to obtain automatic measurements with higher temporal resolution and accuracy, defining a network of sensors within each country. The Finnish Meteorological Institute Image processing tool (FMIPROT) is used to retrieve the snow depth from images of a snow stake on the ground collected by cameras. An “ad-hoc” algorithm based on the brightness difference between snowpack and stake’s markers has been developed. We illustrated three case studies (case study 1-Sodankylä Peatland, case study 2-Gressoney la Trinitè Dejola, and case study 3-Careser dam) to highlight potentialities and pitfalls of the method. The proposed method provides, respect to the existing methods, new possibilities and advantages in the estimation of snow depth, which can be summarized as follows: 1) retrieving the snow depth at high temporal resolution, and an accuracy comparable to the most common method (manual measurements); 2) errors or misclassifications can be identified simply with a visual observation of the images; 3) estimating the spatial variability of snow depth by placing more than one snow stake on the camera’s view; 4) concerning the well-known under catch problem of instrumental pluviometer, occurring especially in mountain regions, the snow water equivalent can be corrected using high-temporal digital images; 5) the method enables retrieval of snow depth in avalanche, dangerous and inaccessible sites, where there is in general a lack of data; 6) the method is cheap, reliable, flexible and easily extendible in different environments and applications. We analyzed cases in which this method can fail due to poor visibility conditions or obstruction on the camera’s view. Defining a simple procedure based on ensemble of simulations and a post processing correction we can reproduce a snow depth time series without biases. Root Mean Square Errors (RMSE) and Nash Sutcliffe Efficiency (NSE) are calculated for all three case studies comparing with both estimates from the FMIPROT and visual observations of images. For the case studies, we found NSE = 0.917 , 0.963, 0.916 respectively for Sodankylä, Gressoney and Careser. In terms of accuracy, the first case study gave better results (RMSE equal to 3.951 · 10−2 m, 5.242 · 10−2 m, 10.78 · 10−2 m, respectively). The worst performances occurred at Careser dam located at 2600 m a.s.l. where extreme weather conditions occur, strongly affecting the clarity of the images. For Sodankylä case study, we showed that the proposed method can improve the measurements obtained by a Campbell snow depth ultrasonic sensor. According to results, we provided also useful information about the proper geometrical configuration stake-camera and the related parameters, which allow to retrieve reliable snow depth time series.


Sign in / Sign up

Export Citation Format

Share Document