scholarly journals Supplementary material to "A statistical definition of the Antarctic marginal ice zone"

Author(s):  
Marcello Vichi
2021 ◽  
Author(s):  
Marcello Vichi

Abstract. The marginal ice zone (MIZ) is a transitional region between the open ocean and pack ice. This region is circumpolar in the Antarctic, with different sea ice types depending on the season and the sector of the Southern Ocean. The MIZ extent have traditionally been inferred from satellite-derived sea-ice concentration (SIC, one of the essential climate variables), using the 15–80 % range as indicative of sea ice with MIZ characteristics. This proxy has been proven effective in the Arctic, where there is a good correspondence between sea-ice type and sea-ice cover. It is less reliable in the Southern Ocean, where sea-ice type is less linked to the concentration value, since wave penetration and free drift conditions have been reported with 100 % cover. I propose an alternative definition of the MIZ that is based on statistical properties of the SIC and its spatial and temporal variability. The indicator is derived from the standard deviation of daily SIC anomalies, which is often employed in the climate sciences. The use of a monthly climatological mean as the baseline allows to capture changes due to both the seasonal advancement/retreat and the local weather-driven variability typical of less consolidated sea-ice conditions. This method has been tested on the available climate data records to derive maps of the MIZ distribution over the year. It reconciles the discordant seasonal extent estimates using the SIC threshold, which is now independent of the used algorithm. This indicator also allows to derive the climatological probability of exceeding a certain threshold of SIC variability, which can be used for ship navigation, design of observational networks and for testing the skills of sea-ice models in forecasting or climate mode.


2009 ◽  
Vol 23 (03) ◽  
pp. 477-480 ◽  
Author(s):  
ZHILI TANG

The Taguchi robust design concept is combined with the multi-objective deterministic optimization method to overcome single point design problems in Aerodynamics. Starting from a statistical definition of stability, the method finds, Nash equilibrium solutions for performance and its stability simultaneously.


2020 ◽  
Author(s):  
Martim Mas e Braga ◽  
Jorge Bernales ◽  
Matthias Prange ◽  
Arjen P. Stroeven ◽  
Irina Rogozhina

2020 ◽  
Vol 14 (6) ◽  
pp. 1971-1984 ◽  
Author(s):  
Rebecca J. Rolph ◽  
Daniel L. Feltham ◽  
David Schröder

Abstract. Many studies have shown a decrease in Arctic sea ice extent. It does not logically follow, however, that the extent of the marginal ice zone (MIZ), here defined as the area of the ocean with ice concentrations from 15 % to 80 %, is also changing. Changes in the MIZ extent has implications for the level of atmospheric and ocean heat and gas exchange in the area of partially ice-covered ocean and for the extent of habitat for organisms that rely on the MIZ, from primary producers like sea ice algae to seals and birds. Here, we present, for the first time, an analysis of satellite observations of pan-Arctic averaged MIZ extent. We find no trend in the MIZ extent over the last 40 years from observations. Our results indicate that the constancy of the MIZ extent is the result of an observed increase in width of the MIZ being compensated for by a decrease in the perimeter of the MIZ as it moves further north. We present simulations from a coupled sea ice–ocean mixed layer model using a prognostic floe size distribution, which we find is consistent with, but poorly constrained by, existing satellite observations of pan-Arctic MIZ extent. We provide seasonal upper and lower bounds on MIZ extent based on the four satellite-derived sea ice concentration datasets used. We find a large and significant increase (>50 %) in the August and September MIZ fraction (MIZ extent divided by sea ice extent) for the Bootstrap and OSI-450 observational datasets, which can be attributed to the reduction in total sea ice extent. Given the results of this study, we suggest that references to “rapid changes” in the MIZ should remain cautious and provide a specific and clear definition of both the MIZ itself and also the property of the MIZ that is changing.


Sign in / Sign up

Export Citation Format

Share Document