scholarly journals Simulation of the satellite radar altimeter sea ice thickness retrieval uncertainty

2009 ◽  
Vol 3 (2) ◽  
pp. 513-559 ◽  
Author(s):  
R. T. Tonboe ◽  
L. T. Pedersen ◽  
C. Haas

Abstract. Although it is well known that radar waves penetrate into snow and sea ice, the exact mechanisms for radar-altimeter scattering and its link to the depth of the effective scattering surface from sea ice are still unknown. Previously proposed mechanisms linked the snow ice interface, i.e. the dominating scattering horizon, directly with the depth of the effective scattering surface. However, simulations using a multilayer radar scattering model show that the effective scattering surface is affected by snow-cover and ice properties. With the coming Cryosat-2 (planned launch 2009) satellite radar altimeter it is proposed that sea ice thickness can be derived by measuring its freeboard. In this study we evaluate the radar altimeter sea ice thickness retrieval uncertainty in terms of floe buoyancy, radar penetration and ice type distribution using both a scattering model and ''Archimedes' principle''. The effect of the snow cover on the floe buoyancy and the radar penetration and on the ice cover spatial and temporal variability is assessed from field campaign measurements in the Arctic and Antarctic. In addition to these well known uncertainties we use high resolution RADARSAT SAR data to simulate errors due to the variability of the effective scattering surface as a result of the sub-footprint spatial backscatter and elevation distribution sometimes called preferential sampling. In particular in areas where ridges represent a significant part of the ice volume (e.g. the Lincoln Sea) the simulated altimeter thickness estimate is lower than the real average footprint thickness. This means that the errors are large, yet manageable if the relevant quantities are known a priori. A discussion of the radar altimeter ice thickness retrieval uncertainties concludes the paper.

2015 ◽  
Vol 9 (1) ◽  
pp. 269-283 ◽  
Author(s):  
R. Lindsay ◽  
A. Schweiger

Abstract. Sea ice thickness is a fundamental climate state variable that provides an integrated measure of changes in the high-latitude energy balance. However, observations of mean ice thickness have been sparse in time and space, making the construction of observation-based time series difficult. Moreover, different groups use a variety of methods and processing procedures to measure ice thickness, and each observational source likely has different and poorly characterized measurement and sampling errors. Observational sources used in this study include upward-looking sonars mounted on submarines or moorings, electromagnetic sensors on helicopters or aircraft, and lidar or radar altimeters on airplanes or satellites. Here we use a curve-fitting approach to determine the large-scale spatial and temporal variability of the ice thickness as well as the mean differences between the observation systems, using over 3000 estimates of the ice thickness. The thickness estimates are measured over spatial scales of approximately 50 km or time scales of 1 month, and the primary time period analyzed is 2000–2012 when the modern mix of observations is available. Good agreement is found between five of the systems, within 0.15 m, while systematic differences of up to 0.5 m are found for three others compared to the five. The trend in annual mean ice thickness over the Arctic Basin is −0.58 ± 0.07 m decade−1 over the period 2000–2012. Applying our method to the period 1975–2012 for the central Arctic Basin where we have sufficient data (the SCICEX box), we find that the annual mean ice thickness has decreased from 3.59 m in 1975 to 1.25 m in 2012, a 65% reduction. This is nearly double the 36% decline reported by an earlier study. These results provide additional direct observational evidence of substantial sea ice losses found in model analyses.


2021 ◽  
Vol 15 (4) ◽  
pp. 1811-1822
Author(s):  
Rasmus T. Tonboe ◽  
Vishnu Nandan ◽  
John Yackel ◽  
Stefan Kern ◽  
Leif Toudal Pedersen ◽  
...  

Abstract. Owing to differing and complex snow geophysical properties, radar waves of different wavelengths undergo variable penetration through snow-covered sea ice. However, the mechanisms influencing radar altimeter backscatter from snow-covered sea ice, especially at Ka- and Ku-band frequencies, and the impact on the Ka- and Ku-band radar scattering horizon or the “track point” (i.e. the scattering layer depth detected by the radar re-tracker) are not well understood. In this study, we evaluate the Ka- and Ku-band radar scattering horizon with respect to radar penetration and ice floe buoyancy using a first-order scattering model and the Archimedes principle. The scattering model is forced with snow depth data from the European Space Agency (ESA) climate change initiative (CCI) round-robin data package, in which NASA's Operation IceBridge (OIB) data and climatology are included, and detailed snow geophysical property profiles from the Canadian Arctic. Our simulations demonstrate that the Ka- and Ku-band track point difference is a function of snow depth; however, the simulated track point difference is much smaller than what is reported in the literature from the Ku-band CryoSat-2 and Ka-band SARAL/AltiKa satellite radar altimeter observations. We argue that this discrepancy in the Ka- and Ku-band track point differences is sensitive to ice type and snow depth and its associated geophysical properties. Snow salinity is first increasing the Ka- and Ku-band track point difference when the snow is thin and then decreasing the difference when the snow is thick (>0.1 m). A relationship between the Ku-band radar scattering horizon and snow depth is found. This relationship has implications for (1) the use of snow climatology in the conversion of radar freeboard into sea ice thickness and (2) the impact of variability in measured snow depth on the derived ice thickness. For both (1) and (2), the impact of using a snow climatology versus the actual snow depth is relatively small on the radar freeboard, only raising the radar freeboard by 0.03 times the climatological snow depth plus 0.03 times the real snow depth. The radar freeboard is a function of both radar scattering and floe buoyancy. This study serves to enhance our understanding of microwave interactions towards improved accuracy of snow depth and sea ice thickness retrievals via the combination of the currently operational and ESA's forthcoming Ka- and Ku-band dual-frequency CRISTAL radar altimeter missions.


2010 ◽  
Vol 36 (1) ◽  
pp. 55-67 ◽  
Author(s):  
Rasmus T. Tonboe ◽  
Leif Toudal Pedersen ◽  
Christian Haas

2020 ◽  
Author(s):  
Rasmus T. Tonboe ◽  
Vishnu Nandan ◽  
John Yackel ◽  
Stefan Kern ◽  
Leif Toudal Pedersen ◽  
...  

Abstract. Owing to differing and complex snow geophysical properties, radar waves of different wavelengths undergo variable penetration through snow-covered sea ice. However, the mechanisms influencing radar altimeter backscatter from snow-covered sea ice, especially at Ka- and Ku-band frequencies, and its impact on the Ka- and Ku-band radar scattering horizon or the "track point" (i.e. the scattering layer depth detected by the radar re-tracker), are not well understood. In this study, we evaluate the Ka- and Ku-band radar scattering horizon with respect to radar penetration and ice floe buoyancy using a first-order scattering model and Archimedes’ principle. The scattering model is forced with snow depth data from the European Space Agency (ESA) climate change initiative (CCI) round robin data package, NASA’s Operation Ice Bridge (OIB) data and climatology, and detailed snow geophysical property profiles from the Canadian Arctic. Our simulations demonstrate that the Ka- and Ku-band track point difference is a function of snow depth, however, the simulated track point difference is much smaller than what is reported in the literature from the CryoSat-2 Ku-band and SARAL/AltiKa Ka-band satellite radar altimeter observations. We argue that this discrepancy in the Ka- and Ku-band track point differences are sensitive to ice type and snow depth and its associated geophysical properties. Snow salinity is first increasing the Ka- and Ku-band track-point difference when the snow is thin and then decreasing the difference when the snow is thick (> 10 cm). A relationship between the Ku-band radar scattering horizon and snow depth is found. This relationship has implications for 1) the use of snow climatology in the conversion of radar freeboard into sea ice thickness and 2) the impact of variability in measured snow depth on the derived ice thickness. For both 1 and 2, the impact of using a snow climatology versus the actual snow depth is relatively small on the measured freeboard, by only raising the measured freeboard by 0.03 times the climatological snow depth plus 0.03 times the real snow depth. This study serves to enhance our understanding of microwave interactions towards improved accuracy of snow depth and sea ice thickness retrievals from combining currently operational and upcoming Ka- and Ku-band dual-frequency radar altimeter missions, such as ESA’s Copernicus High Priority Candidate Mission CRISTAL.


2013 ◽  
Vol 7 (4) ◽  
pp. 1315-1324 ◽  
Author(s):  
M. Zygmuntowska ◽  
K. Khvorostovsky ◽  
V. Helm ◽  
S. Sandven

Abstract. Sea ice thickness is one of the most sensitive variables in the Arctic climate system. In order to quantify changes in sea ice thickness, CryoSat-2 was launched in 2010 carrying a Ku-band radar altimeter (SIRAL) designed to measure sea ice freeboard with a few centimeters accuracy. The instrument uses the synthetic aperture radar technique providing signals with a resolution of about 300 m along track. In this study, airborne Ku-band radar altimeter data over different sea ice types have been analyzed. A set of parameters has been defined to characterize the differences in strength and width of the returned power waveforms. With a Bayesian-based method, it is possible to classify about 80% of the waveforms from three parameters: maximum of the returned power waveform, the trailing edge width and pulse peakiness. Furthermore, the maximum of the power waveform can be used to reduce the number of false detections of leads, compared to the widely used pulse peakiness parameter. For the pulse peakiness the false classification rate is 12.6% while for the power maximum it is reduced to 6.5%. The ability to distinguish between different ice types and leads allows us to improve the freeboard retrieval and the conversion from freeboard into sea ice thickness, where surface type dependent values for the sea ice density and snow load can be used.


2010 ◽  
Vol 4 (2) ◽  
pp. 641-661 ◽  
Author(s):  
V. Alexandrov ◽  
S. Sandven ◽  
J. Wahlin ◽  
O. M. Johannessen

Abstract. Retrieval of Arctic sea ice thickness from radar altimeter freeboard data, to be provided by CryoSat-2, requires observational data to verify the relation between the two variables. In this study in-situ ice and snow data from 689 observation sites obtained during the Sever expeditions in the 1980s have been used to establish an empirical relation between ice thickness and freeboard. Estimates of mean and variability of snow depth, snow density and ice density were produced based on many field observations, and have been used in the isostatic equilibrium equation to estimate ice thickness as a function of ice freeboard, snow depth and snow/ice density. The accuracy of the ice thickness retrieval has been calculated from the estimated variability in ice and snow parameters and error of ice freeboard measurements. It is found that uncertainties of ice density and freeboard are the major sources of error in ice thickness calculation. For FY ice, retrieval of ≈1.0 m (2.0 m) thickness has an uncertainty of 60% (41%). For MY ice the main uncertainty is ice density error, since the freeboard error is relatively smaller than for FY ice. Retrieval of 2.4 m (3.0 m) thick MY ice has an error of 24% (21%). The freeboard error is ±0.05 m for both the FY and MY ice. If the freeboard error can be reduced to 0.01 m by averaging a large number of measurements from CryoSat, the error in thickness retrieval is reduced to about 32% for a 1.0 m thick FY floe and to about 18% for a 2.3 m thick MY floe. The remaining error is dominated by uncertainty in ice density. Provision of improved ice density data is therefore important for accurate retrieval of ice thickness from CryoSat data.


2021 ◽  
Author(s):  
William Gregory ◽  
Isobel R. Lawrence ◽  
Michel Tsamados

Abstract. Observations of sea ice freeboard from satellite radar altimeters are crucial in the derivation of sea ice thickness estimates, which in turn inform on sea ice forecasts, volume budgets, and productivity rates. Current spatio-temporal resolution of radar freeboard is limited as 30 days are required in order to generate pan-Arctic coverage from CryoSat-2, or 27 days from Sentinel-3 satellites. This therefore hinders our ability to understand physical processes that drive sea ice thickness variability on sub-monthly time scales. In this study we exploit the consistency between CryoSat-2, Sentinel-3A and Sentinel-3B radar freeboards in order to produce daily gridded pan-Arctic freeboard estimates between December 2018 and April 2019. We use the Bayesian inference approach of Gaussian Process Regression to learn functional mappings between radar freeboard observations in space and time, and to subsequently retrieve pan-Arctic freeboard, as well as uncertainty estimates. The estimated daily fields are, on average across the 2018–2019 season, equivalent to CryoSat-2 and Sentinel-3 freeboards to within 2 mm (standard deviations < 5 cm), and cross-validation experiments show that errors in predictions are, on average, within 3 mm across the same period. We also demonstrate the improved temporal variability of a pan-Arctic daily product by comparing time series of the predicted freeboards, with time series from CryoSat-2 and Sentinel-3 freeboards, across 9 sectors of the Arctic. The mean of predicted and CryoSat-2 or Sentinel-3 time series are generally consistent to within 3 mm, except for the Canadian Archipelago and Greenland, Iceland and Norwegian Seas, which show discrepancies greater than 1 cm due, in part, to biases between CryoSat-2 and Sentinel-3 observations in these locations.


2010 ◽  
Vol 4 (3) ◽  
pp. 373-380 ◽  
Author(s):  
V. Alexandrov ◽  
S. Sandven ◽  
J. Wahlin ◽  
O. M. Johannessen

Abstract. Retrieval of Arctic sea ice thickness from CryoSat-2 radar altimeter freeboard data requires observational data to verify the relation between these two variables. In this study in-situ ice and snow data from 689 observation sites, obtained during the Sever expeditions in the 1980s, have been used to establish an empirical relation between thickness and freeboard of FY ice in late winter. Estimates of mean and variability of snow depth, snow density and ice density were produced on the basis of many field observations. These estimates have been used in the hydrostatic equilibrium equation to retrieve ice thickness as a function of ice freeboard, snow depth and snow/ice density. The accuracy of the ice thickness retrieval has been calculated from the estimated variability in ice and snow parameters and error of ice freeboard measurements. It is found that uncertainties of ice density and freeboard are the major sources of error in ice thickness calculation. For FY ice, retrieval of ≈ 1.0 m (2.0 m) thickness has an uncertainty of 46% (37%), and for MY ice, retrieval of 2.4 m (3.0 m) thickness has an uncertainty of 20% (18%), assuming that the freeboard error is ± 0.03 m for both ice types. For MY ice the main uncertainty is ice density error, since the freeboard error is relatively smaller than that for FY ice. If the freeboard error can be reduced to 0.01 m by averaging measurements from CryoSat-2, the error in thickness retrieval is reduced to about 32% for a 1.0 m thick FY floe and to about 18% for a 2.4 m thick MY floe. The remaining error is dominated by uncertainty in ice density. Provision of improved ice density data is therefore important for accurate retrieval of ice thickness from CryoSat-2 data.


2014 ◽  
Vol 8 (4) ◽  
pp. 4545-4580 ◽  
Author(s):  
R. Lindsay ◽  
A. Schweiger

Abstract. Sea ice thickness is a fundamental climate state variable that provides an integrated measure of changes in the high-latitude energy balance. However, observations of ice thickness have been sparse in time and space making the construction of observation-based time series difficult. Moreover, different groups use a variety of methods and processing procedures to measure ice thickness and each observational source likely has different and poorly characterized measurement and sampling biases. Observational sources include upward looking sonars mounted on submarines or moorings, electromagnetic sensors on helicopters or aircraft, and lidar or radar altimeters on airplanes or satellites. Here we use a curve-fitting approach to evaluate the systematic differences between eight different observation systems in the Arctic Basin. The approach determines the large-scale spatial and temporal variability of the ice thickness as well as the mean differences between the observation systems using over 3000 estimates of the ice thickness. The thickness estimates are measured over spatial scales of approximately 50 km or time scales of 1 month and the primary time period analyzed is 2000–2013 when the modern mix of observations is available. Good agreement is found between five of the systems, within 0.15 m, while systematic differences of up to 0.5 m are found for three others compared to the five. The trend in annual mean ice thickness over the Arctic Basin is −0.58 ± 0.07 m decade−1 over the period 2000–2013, while the annual mean ice thickness for the central Arctic Basin alone (the SCICEX Box) has decreased from 3.45 m in 1975 to 1.11 m in 2013, a 68% reduction. This is nearly double the 36% decline reported by an earlier study. These results provide additional direct observational confirmation of substantial sea ice losses found in model analyses.


2013 ◽  
Vol 7 (2) ◽  
pp. 1215-1242
Author(s):  
M. Zygmuntowska ◽  
K. Khvorostovsky ◽  
V. Helm ◽  
S. Sandven

Abstract. Sea ice thickness is one of the most sensitive variables in the Arctic climate system. In order to quantify changes in sea ice thickness, CryoSat was launched in 2010 carrying a Ku-band Radar Altimeter (SIRAL) designed to measure sea ice freeboard with a few centimeters accuracy. The instrument uses the synthetic aperture radar technique providing signals with a resolution of about 300 m along track. In this study, airborne Ku-band radar altimeter data over different sea ice types has been analyzed. A set of parameters has been defined to characterize the difference in strength and width of the returned power waveforms. With a Bayesian based method it is possible to classify about 80% of the waveforms by three parameters: maximum of the returned power echo, the trailing edge width and pulse peakiness. Furthermore, the radar power echo maximum can be used to minimize the rate of false detection of leads compared to the widely used Pulse Peakiness parameter. The possibility to distinguish between different ice types and open water allows to improve the freeboard retrieval and the conversion into sea ice thickness where surface type dependent values for the sea ice density and snow load can be used.


Sign in / Sign up

Export Citation Format

Share Document