scholarly journals Evaluation of the global-blockage effect on power performance through simulations and measurements

2021 ◽  
Author(s):  
Alessandro Sebastiani ◽  
Alfredo Peña ◽  
Niels Troldborg ◽  
Alexander Meyer Forsting

Abstract. Blockage effects due to the interaction of five wind turbines in a row are investigated through both Reynolds-averaged Navier-Stokes simulations and site measurements. Since power performance tests are often carried out at sites consisting of several turbines in a row, the objective of this study is to evaluate whether the power performance of the five turbines differs from that of an isolated turbine. A number of simulations are performed, in which we vary the turbine inter-spacing (1.8, 2 and 3 rotor diameters) and the inflow angle between the incoming wind and the orthogonal line to the row (from 0° to 45°). Different values of the free-stream velocity are considered to cover a broad wind speed range of the power curve. Numerical results show consistent power deviations for all the five turbines when compared to the isolated case. The amplitude of these deviations depends on the location of the turbine within the row, the inflow angle, the inter-spacing and the power curve region of operation. We show that the power variations do not cancel out when averaging over a large inflow sector (from −45° to +45°) and find an increase in the power output of up to +1 % when compared to the isolated case. We simulate power performance ‘measurements’ with both a virtual mast and nacelle-mounted lidar and find a combination of power output increase and upstream velocity reduction, which causes an increase of +4 % of the power coefficient. We also use measurements from a real site consisting of a row of five wind turbines to validate the numerical results. From the analysis of the measurements, we also show that the power performance is impacted by the neighboring turbines. Compared to when the inflow is perpendicular to the row, the power output varies of +1.8 % and −1.8 % when the turbine is the most downwind and upwind of the line, respectively.

2020 ◽  
pp. 0309524X2093250
Author(s):  
Jon Leary ◽  
Hugh Piggott ◽  
Robert Howell

This article presents new insight into the real-world performance of a range of open source locally manufactured small wind turbines designed to enable sustainable rural electrification. The power performance of seven machines was measured in situ and compared to wind tunnel, test site and other in situ data to produce a set of generic power curves. This article shows that the shape and size of the curve (and therefore the energy that will be generated) varies considerably. However, over-performance was just as likely as under-performance, validating the designer’s predicted energy yields. Nonetheless, optimising the power curve by tuning the small wind turbine increased energy yields by up to 156%. Developing low-cost practical tools that can enable rapid power curve measurements in the field could help reduce uncertainty when planning rural electrification programmes and ensure that small wind turbines are able to deliver vital energy services in off-grid regions of developing countries.


Author(s):  
J. Kuroda ◽  
M. Iida ◽  
C. Arakawa

The purpose of this study is to establish the nacelle anemometry for the wind forecast. This paper describes the problems of the meteorological anemometry and the nacelle anemometry based on measurement data in Japan. In the results, it is shown that wind velocity measured at the mast is less related with power output of wind turbines than measured at the nacelle. However it seems power curve referred to the nacelle anemometer to shift to lower wind velocity. Then the numerical simulation is carried out for the flow field around the nacelle and the blade as the first step.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Milad Mousavi ◽  
Mehran Masdari ◽  
Mojtaba Tahani

Purpose Nowadays flaps and winglets are one of the main mechanisms to increase airfoil efficiency. This study aims to investigate the power performance of vertical axis wind turbines (VAWT) that are equipped with diverse gurney flaps. This study could play a crucial role in the design of the VAWT in the future. Design/methodology/approach In this paper, the two-dimensional computational fluid dynamics simulation is used. The second-order finite volume method is used for the discretization of the governing equations. Findings The results show that the gurney flap enhances the power coefficient at the low range of tip speed ratio (TSR). When an angled and standard gurney flap case has the same aerodynamic performance, an angled gurney flap case has a lower hinge moment on the junction of airfoil and gurney flap which shows the structural excellence of this case. In all gurney flap cases, the power coefficient increases by an average of 20% at the TSR range of 0.6 to 1.8. The gurney flap cases do not perform well at the high TSR range and the results show a lower amount of power coefficient compare to the clean airfoil. Originality/value The angled gurney flap which has the structural advantage and is deployed to the pressure side of the airfoil improves the efficiency of VAWT at the low and medium range of TSR. This study recommends using a controllable gurney flap which could be deployed at a certain amount of TSR.


2021 ◽  
Author(s):  
Hao Su ◽  
Haoran Meng ◽  
Jia Guo ◽  
Timing Qu ◽  
Liping Lei

Abstract Wind energy has attracted worldwide attention as a pollution-free and widely distributed renewable energy source. Increasing the power density by optimizing the arrangement of wind turbines has been a popular field of research in recent years. In the present work, a systematic study on the influence of array configuration on vertical axis wind turbines is made through wind tunnel experiments. Firstly, the power performance of an isolated vertical axis wind turbine at different tip speed ratios is tested as a benchmark of comparison. Multiple situations of two-turbine configurations are then tested and the results are compared with the isolated wind turbine. The power coefficient of the turbine pair increases by 34% when the turbines are 2.4 rotor diameters apart and rotate in the same direction. In the counter-rotating co-leeward case, it is demonstrated that the turbine pairs will have a positive effect on each other when they are separated by 2.1 rotor diameters to 2.4 rotor diameters. The lateral spacing between the counter-rotating co-windward turbine pair should be greater than 1.5 rotor diameters to avoid turbulence interference between the rotors.


2016 ◽  
Author(s):  
Giorgio Demurtas ◽  
Troels Friis Pedersen ◽  
Rozenn Wagner

Abstract. The objective of this investigation was to verify the feasibility of using the spinner anemometer calibration and nacelle transfer function determined on one reference turbine, to assess the power performance of a second identical turbine. An experiment was set up with a met-mast in a position suitable to measure the power curve of the two wind turbines, both equipped with a spinner anemometer. An IEC 61400-12-1 compliant power curve was then measured for both turbines using the met-mast. The NTF (Nacelle Transfer Function) was measured on the reference turbine and then applied to both turbines to calculate the free wind speed. For each of the two wind turbines, the power curve (PC) was measured with the met-mast and the nacelle power curve (NPC) with the spinner anemometer. Four power curves (two PC and two NPC) were compared in terms of AEP (Annual Energy Production) for a Rayleigh wind speed probability distribution. For each turbine, the NPC agreed with the corresponding PC within 0.10 % of AEP for the reference turbine and within 0,38 % for the second turbine, for a mean wind speed of 8 m/s.


2017 ◽  
Vol 2 (1) ◽  
pp. 97-114 ◽  
Author(s):  
Giorgio Demurtas ◽  
Troels Friis Pedersen ◽  
Rozenn Wagner

Abstract. The objective of this investigation was to verify the feasibility of using the spinner anemometer calibration and nacelle transfer function determined on one reference wind turbine, in order to assess the power performance of a second identical turbine. An experiment was set up with a met mast in a position suitable to measure the power curve of the two wind turbines, both equipped with a spinner anemometer. An IEC 61400-12-1-compliant power curve was then measured for both wind turbines using the met mast. The NTF (nacelle transfer function) was measured on the reference wind turbine and then applied to both turbines to calculate the free wind speed. For each of the two wind turbines, the power curve (PC) was measured with the met mast and the nacelle power curve (NPC) with the spinner anemometer. Four power curves (two PCs and two NPCs) were compared in terms of AEP (annual energy production) for a Rayleigh wind speed probability distribution. For each wind turbine, the NPC agreed with the corresponding PC within 0.10 % of AEP for the reference wind turbine and within 0.38 % for the second wind turbine, for a mean wind speed of 8 m s−1.


Author(s):  
Nathalie Dabin ◽  
Christophe Leclerc ◽  
Christian Masson ◽  
Cedric Alinot

The present study is motivated by several observations of unexpected, recurring, high levels of power for stall-regulated wind turbines operating under very low temperatures. As power levels recorded largely exceed design levels of the rotor, operation in such conditions can cause dramatic damage to turbine. This study aims to understand the origin of such phenomenon by analyzing experimental data gathered from a stall-controlled wind turbine, having a nominal power of more than 500 kW, and comparing the experimental behaviour with numerical simulations. To provide a quantitative estimate of density and atmospheric turbulence effects on power output, a procedure based on the IEC 61400-12 international standard for elaboration of a wind turbine power curve is used. The numerical simulations is based on the solution of the time-averaged, steady-state, incompressible Navier-Stokes equations with an appropriate turbulence closure model. The actuator disk model, together with blade element theory, are used to model the turbines. The stall-regulated turbine analyzed has shown to produce measured power increases significantly higher than increases of density. Regarding the influence of turbulence intensity, it has been observed that for constant hub height incoming wind velocity and density, power output increases with turbulence intensity at low winds, the opposite being true at higher winds. The numerical simulations show a good agrement with the measurements.


2012 ◽  
Vol 622-623 ◽  
pp. 1084-1088
Author(s):  
Jafar Bazrafshan ◽  
Payam Sabaeifard ◽  
Farid Khalafi ◽  
Majid Jamil

Integrating wind turbines in urban areas especially over buildings is a new way of producing electricity which is supported in recent years. Wind turbines sited well above the roof of buildings operate in skewed flow. In this paper, to examine variations in efficiency of wind turbines in this condition, two models of H-Rotor and horizontal axis wind turbine analyzed based on axial momentum theory through computer simulations. Simulations conducted through CFD method and k-ε turbulence model was utilized to analyze flow fluctuations in Navier-Stokes equations. Models show that, for an H-Rotor, the optimal power output in tilted flow can be up to two times the power output of horizontal axis wind turbine (HAWT).


2013 ◽  
Vol 29 (3) ◽  
pp. N15-N20 ◽  
Author(s):  
T. Y. Chen ◽  
C. W. Hung ◽  
Y. T. Liao

AbstractThis research experimentally investigates the rotor aerodynamics of horizontal-axis, micro-wind turbines. Specifically, the aerodynamic characteristics of large-tip, non-twisted blades are studied. The study is conducted in a wind tunnel system to obtain the relations between the power coefficient (CP) and tip speed ratio (TSR), the torque coefficient (CT) and TSR. Effects of rotor position inside a flanged diffuser, rotor solidity and blade number on rotor performance are investigated. The blade cross-section is NACA4415 airfoil. The pitch angle of the blades is fixed at 30°, and the chord length ratio between the blade root and tip (Cr / Ct) is fixed at 0.3. Results show that larger power output is obtained when the rotor placed closer to the diffuser inlet. The 60%-solidity rotor, in general, achieves better power and torque outputs among the test rotor solidities. The higher the blade number is, the larger the power output is, but the difference is small. Comparisons between the present and previous relatively short-tip blades (Cr / Ct = 0.5) show that the present blades have better power and torque outputs at lower rotor rotational speed. These results suggest that the large-tip blades are suitable for micro-wind turbine applications, and make rotor-generator matching more flexible.


Sign in / Sign up

Export Citation Format

Share Document