scholarly journals Land-based wind turbines with flexible rail transportable blades – Part I: Conceptual design and aeroservoelastic performance

2021 ◽  
Author(s):  
Pietro Bortolotti ◽  
Nick Johnson ◽  
Nikhar J. Abbas ◽  
Evan Anderson ◽  
Ernesto Camarena ◽  
...  

Abstract. This work investigates the conceptual design and the aeroservoelastic performance of land-based wind turbines whose blades can be transported on rail via controlled bending. The turbines have a nameplate power of 5 MW and a rotor diameter of 206 m, and they aim to represent the next generation of land-based machines. Three upwind designs and two downwind designs are presented, combining different design goals together with conventional glass and pultruded carbon fiber laminates in the spar caps. The results show that controlled flexing requires a reduction in the flapwise stiffness of the blades, but it represents a promising pathway to increase the size of land-based wind turbine rotors. Given the required stiffness, the rotor can be designed either downwind with standard rotor preconing and nacelle uptilt angles or upwind with higher-than-usual angles. A downwind-specific controller is also presented, featuring a cut-out wind speed reduced to 19 m per second and a pitch-to-stall shutdown strategy to minimize blade-tip deflections toward the tower. The flexible upwind and downwind rotor designs equipped with pultruded carbon fiber spar caps are found to generate the lowest levelized cost of energy, 2.9 % and 1.3 %, respectively, less than the segmented design. The paper concludes with several recommendations for future work in the area of large flexible wind turbine rotors.

2021 ◽  
Vol 6 (5) ◽  
pp. 1277-1290
Author(s):  
Pietro Bortolotti ◽  
Nick Johnson ◽  
Nikhar J. Abbas ◽  
Evan Anderson ◽  
Ernesto Camarena ◽  
...  

Abstract. This work investigates the conceptual design and the aeroservoelastic performance of land-based wind turbines whose blades can be transported on rail via controlled bending. The turbines have a nameplate power of 5 MW and a rotor diameter of 206 m, and they aim to represent the next generation of land-based machines. Three upwind designs and two downwind designs are presented, combining different design goals together with conventional glass and pultruded carbon fiber laminates in the spar caps. One of the five blade designs is segmented and serves as a benchmark to the state of the art in industry. The results show that controlled flexing requires a reduction in the flapwise stiffness of the blades, but it represents a promising pathway for increasing the size of land-based wind turbine rotors. Given the required stiffness, the rotor can be designed either downwind with standard rotor preconing and nacelle uptilt angles or upwind with higher-than-usual angles. A downwind-specific controller is also presented, featuring a cut-out wind speed reduced to 19 m s−1 and a pitch-to-stall shutdown strategy to minimize blade tip deflections toward the tower. The flexible upwind and downwind rotor designs equipped with pultruded carbon fiber spar caps are found to generate the lowest levelized cost of energy, 2.9 % and 1.3 %, respectively, less than the segmented design. The paper concludes with several recommendations for future work in the area of large flexible wind turbine rotors.


2018 ◽  
Vol 36 (6) ◽  
pp. 1708-1728 ◽  
Author(s):  
Zahid H Hulio ◽  
Wei Jiang

Pakistan pursued the renewable energy policy to minimize the cost of energy per kWh as well as dependence on costly imported oil. Jhimpir site is termed as wind corridor and has tremendous proven wind power potential. The site is hosted for the first installed wind power plant. The aim of paper is to investigate the performance and levelized cost of energy of a wind farm. The methodology covers assessment of wind characteristics, performance function and levelized cost of energy model. The measured mean wind speed was found to be 8 m/s at 80 m above the ground level. The average values of standard deviation, Weibull k and c parameters, obtained using entire data set, were found to be 2.563, 3.360 and 8.940 m/s at 80 m. Performance assessment including technical, real availability and average capacity factor was found to be 97, 90 and 34.50%, respectively. It is evident that the power coefficient dropped if wind speed crosses the rated power. So it can be concluded that the efficiency of wind turbine decreased by increased wind speed. Tip speed ratio shows that a wind turbine operating close to optimal lift and drag will exhibit the performance level. Wind turbine performs better at the wind speed between 6 and 10 m/s. The estimated average levelized cost of energy was US $0.11371 and US $0.04092/kWh for 1–10 and 11–20 years, respectively. This makes it competitive in terms of low production cost per kWh to other energy technologies.


2019 ◽  
Vol 4 (1) ◽  
pp. 115-125 ◽  
Author(s):  
Pietro Bortolotti ◽  
Abhinav Kapila ◽  
Carlo L. Bottasso

Abstract. The size of wind turbines has been steadily growing in the pursuit of a lower cost of energy by an increased wind capture. Within this trend, the vast majority of wind turbine rotors have been designed based on the conventional three-bladed upwind concept. This paper aims at assessing the optimality of this configuration with respect to a three-bladed downwind design, with and without an actively controlled variable coning used to reduce the cantilever loading of the blades. Results indicate that a conventional design appears difficult to beat even at these turbine sizes, although a downwind nonaligned configuration might be an interesting alternative.


2020 ◽  
pp. 0958305X2093700
Author(s):  
A Albani ◽  
MZ Ibrahim ◽  
KH Yong ◽  
ZM Yusop ◽  
MA Jusoh ◽  
...  

This paper presents the wind energy potential at Kudat Malaysia by considering the Levelized cost of energy (LCOE) model for combined wind turbine capacities. The combination of small- and utility-scale wind turbines is the key to the success of the operation of a wind park in the lower wind speed region. In a combination approach, the small-scale wind turbines provide the power required by the utility-scale wind turbines to start the blade rotation. For this reason, the particular closed-form equation was modified to determine the LCOE of a wind park with combined turbine capacities. The modified LCOE model can be used as a basis for setting tariff rates or define the economic feasibility of wind energy projects with combined wind turbine capacities.


Author(s):  
S. G. Ignatiev ◽  
S. V. Kiseleva

Optimization of the autonomous wind-diesel plants composition and of their power for guaranteed energy supply, despite the long history of research, the diversity of approaches and methods, is an urgent problem. In this paper, a detailed analysis of the wind energy characteristics is proposed to shape an autonomous power system for a guaranteed power supply with predominance wind energy. The analysis was carried out on the basis of wind speed measurements in the south of the European part of Russia during 8 months at different heights with a discreteness of 10 minutes. As a result, we have obtained a sequence of average daily wind speeds and the sequences constructed by arbitrary variations in the distribution of average daily wind speeds in this interval. These sequences have been used to calculate energy balances in systems (wind turbines + diesel generator + consumer with constant and limited daily energy demand) and (wind turbines + diesel generator + consumer with constant and limited daily energy demand + energy storage). In order to maximize the use of wind energy, the wind turbine integrally for the period in question is assumed to produce the required amount of energy. For the generality of consideration, we have introduced the relative values of the required energy, relative energy produced by the wind turbine and the diesel generator and relative storage capacity by normalizing them to the swept area of the wind wheel. The paper shows the effect of the average wind speed over the period on the energy characteristics of the system (wind turbine + diesel generator + consumer). It was found that the wind turbine energy produced, wind turbine energy used by the consumer, fuel consumption, and fuel economy depend (close to cubic dependence) upon the specified average wind speed. It was found that, for the same system with a limited amount of required energy and high average wind speed over the period, the wind turbines with lower generator power and smaller wind wheel radius use wind energy more efficiently than the wind turbines with higher generator power and larger wind wheel radius at less average wind speed. For the system (wind turbine + diesel generator + energy storage + consumer) with increasing average speed for a given amount of energy required, which in general is covered by the energy production of wind turbines for the period, the maximum size capacity of the storage device decreases. With decreasing the energy storage capacity, the influence of the random nature of the change in wind speed decreases, and at some values of the relative capacity, it can be neglected.


Author(s):  
Mohamed Saiful Firdaus Hussin ◽  
Mohd Fariduddin Mukhtar ◽  
Mohd Zaidi Mohd Tumari ◽  
Nursabillilah Mohd Ali ◽  
Amir Abdullah Muhammad Damanhuri ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6167
Author(s):  
Fang Feng ◽  
Guoqiang Tong ◽  
Yunfei Ma ◽  
Yan Li

In order to get rid of the impact of the global financial crisis and actively respond to global climate change, it has become a common choice for global economic development to develop clean energy such as wind energy, improve energy efficiency and reduce greenhouse gas emissions. With the advantages of simple structure, unnecessary facing the wind direction, and unique appearance, the vertical axis wind turbine (VAWT) attracts extensive attention in the field of small and medium wind turbines. The lift-type VAWT exhibits outstanding aerodynamic characteristics at a high tip speed ratio, while the starting characteristics are generally undesirable at a low wind speed; thus, how to improve the starting characteristics of the lift-type VAWT has always been an important issue. In this paper, a lift-drag combined starter (LDCS) suitable for lift-type VAWT was proposed to optimize the starting characteristics of lift-type VAWT. With semi-elliptical drag blades and lift blades equipped on the middle and rear part outside the starter, the structure is characterized by lift-drag combination, weakening the adverse effect of the starter with semi-elliptical drag blades alone on the output performance of the original lift-type VAWT and improving the characteristics of the lift-drag combined VAWT. The static characteristic is one of the important starting characteristics of the wind turbine. The rapid development of computational fluid dynamics has laid a solid material foundation for VAWT. Thus the static characteristics of the LDCS with different numbers of blades were investigated by conducting numerical simulation and wind tunnel tests. The results demonstrated that the static torque coefficient of LDCS increased significantly with the increased incoming wind speed. The average value of the static torque coefficient also increased significantly. This study can provide guidelines for the research of lift-drag combined wind turbines.


Author(s):  
Hyunseong Min ◽  
Cheng Peng ◽  
Fei Duan ◽  
Zhiqiang Hu ◽  
Jun Zhang

Wind turbines are popular for harnessing wind energy. Floating offshore wind turbines (FOWT) installed in relatively deep water may have advantages over their on-land or shallow-water cousins because winds over deep water are usually steadier and stronger. As the size of wind turbines becomes larger and larger for reducing the cost per kilowatt, it could bring installation and operation risks in the deep water due to the lack of track records. Thus, together with laboratory tests, numerical simulations of dynamics of FOWT are desirable to reduce the probability of failure. In this study, COUPLE-FAST was initially employed for the numerical simulations of the OC3-HYWIND, a spar type platform equipped with the 5-MW baseline wind turbine proposed by National Renewable Energy Laboratory (NREL). The model tests were conducted at the Deepwater Offshore Basin in Shanghai Jiao Tong University (SJTU) with a 1:50 Froude scaling [1]. In comparison of the simulation using COUPLE-FAST with the corresponding measurements, it was found that the predicted motions were in general significantly smaller than the related measurements. The main reason is that the wind loads predicted by FAST were well below the related measurements. Large discrepancies are expected because the prototype and laboratory wind loads do not follow Froude number similarity although the wind speed was increased (or decreased) in the tests such that the mean surge wind force matched that predicted by FAST at the nominal wind speed (Froude similarity) in the cases of a land wind turbine [1]. Therefore, an alternative numerical simulation was made by directly inputting the measured wind loads to COUPLE instead of the ones predicted by FAST. The related simulated results are much improved and in satisfactory agreement with the measurements.


2018 ◽  
Vol 140 (4) ◽  
Author(s):  
René M. M. Slot ◽  
Lasse Svenningsen ◽  
John D. Sørensen ◽  
Morten L. Thøgersen

Wind turbines are subjected to fatigue loading during their entire lifetime due to the fluctuating excitation from the wind. To predict the fatigue damage, the design standard IEC 61400-1 describes how to parametrize an on-site specific wind climate using the wind speed, turbulence, wind shear, air density, and flow inclination. In this framework, shear is currently modeled by its mean value, accounting for neither its natural variance nor its wind speed dependence. This very simple model may lead to inaccurate fatigue assessment of wind turbine components, whose structural response is nonlinear with shear. Here we show how this is the case for flapwise bending of blades, where the current shear model leads to inaccurate and in worst case nonconservative fatigue assessments. Based on an optimization study, we suggest modeling shear as a wind speed dependent 60% quantile. Using measurements from almost one hundred sites, we document that the suggested model leads to accurate and consistent fatigue assessments of wind turbine blades, without compromising other main components such as the tower and the shaft. The proposed shear model is intended as a replacement to the mean shear, and should be used alongside the current IEC models for the remaining climate parameters. Given the large number of investigated sites, a basis for evaluating the uncertainty related to using a simplified statistical wind climate is provided. This can be used in further research when assessing the structural reliability of wind turbines by a probabilistic or semiprobabilistic approach.


Sign in / Sign up

Export Citation Format

Share Document