scholarly journals High Reynolds investigations on the ability of the full scale e-TellTale sensor to detect flow separation on a wind turbine blade section

2021 ◽  
Author(s):  
Antoine Soulier ◽  
Caroline Braud ◽  
Dimitri Voisin ◽  
Danbon Frédéric

Abstract. The complexity of the flow over a wind turbine blade makes its understanding and monitoring a challenging task, especially on operating wind turbines. The innovative e-Telltale sensor is developed for that purpose : detecting the flow separation on wind turbines blades. In this paper, high Reynolds wind tunnel tests have been performed with different configurations of full scale e-Telltale sensors and wall pressure measurements on a wind turbine blade section. A comparison between the lift curve and the e-Telltale signal was used to evaluate the ability of the sensor to detect flow separation. Results show different interesting properties of the sensor response depending on its size, position along the chord and its fitting process that could be used in real applications.

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Marcin Luczak ◽  
Simone Manzato ◽  
Bart Peeters ◽  
Kim Branner ◽  
Peter Berring ◽  
...  

This paper presents selected results and aspects of the multidisciplinary and interdisciplinary research oriented for the experimental and numerical study of the structural dynamics of a bend-twist coupled full scale section of a wind turbine blade structure. The main goal of the conducted research is to validate finite element model of the modified wind turbine blade section mounted in the flexible support structure accordingly to the experimental results. Bend-twist coupling was implemented by adding angled unidirectional layers on the suction and pressure side of the blade. Dynamic test and simulations were performed on a section of a full scale wind turbine blade provided by Vestas Wind Systems A/S. The numerical results are compared to the experimental measurements and the discrepancies are assessed by natural frequency difference and modal assurance criterion. Based on sensitivity analysis, set of model parameters was selected for the model updating process. Design of experiment and response surface method was implemented to find values of model parameters yielding results closest to the experimental. The updated finite element model is producing results more consistent with the measurement outcomes.


2018 ◽  
Vol 32 (11) ◽  
pp. 5097-5104 ◽  
Author(s):  
Qiang Ma ◽  
Zong-Wen An ◽  
Jian-Xiong Gao ◽  
Hai-Xia Kou ◽  
Xue-Zong Bai

2014 ◽  
Vol 1014 ◽  
pp. 124-127
Author(s):  
Zhi Qiang Xu ◽  
Jian Huang

Wind turbines consists of three key parts, namely, wind wheels (including blades, hub, etc.), cabin (including gearboxes, motors, controls, etc.) and the tower and Foundation. Wind turbine wheel is the most important part ,which is made up of blades and hubs. Blade has a good aerodynamic shape, which will produce aerodynamic in the airflow rotation, converting wind energy into mechanical energy, and then, driving the generator into electrical energy by gearbox pace. Wind turbine operates in the natural environment, their load wind turbine blades are more complex. Therefore load calculations and strength analysis for wind turbine design is very important. Wind turbine blades are core components of wind turbines, so understanding of their loads and dynamics by which the load on the wind turbine blade design is of great significance.


Author(s):  
David M. McStravick ◽  
Brent C. Houchens ◽  
David C. Garland ◽  
Kenneth E. Davis

Due to the increasing demand for alternative energy sources and the reliability of wind turbines, the performance of different horizontal-axis wind turbine blade designs were investigated and compared through computational fluid dynamics (CFD) modeling and wind tunnel testing. The Eppler 423 airfoil was of particular interest. In avionics the blade has been associated with high lift and a low tendency to stall, yet little is known about its performance in wind turbines. In both physical testing and ANSYS CFX 11.0 analysis, the airfoil significantly outperformed a Nordtank 41/500 turbine blade. Wind tunnel tests were performed on 12-inch diameter ABS polymer prototypes, created with a 3D printer. To exaggerate the features of each prototype and obtain more measureable differences in turbine performance, the blades are scaled down more in the radial direction than in the profile section directions. The Eppler 423 airfoil design was tested at different blade base angles. The testing identified an optimum power production for a blade base angle of 25°. In the ANSYS CFX computer simulations, the moments on to the turbine blade due to the incoming air allowed for the power generated and the coefficient of power (Cp) to be determined and compared. The Eppler profile outperformed the Nordtank blade profile in these simulations.


2013 ◽  
Vol 394 ◽  
pp. 309-313
Author(s):  
Yuan Ma ◽  
Pan Zeng ◽  
Hong Ya Lu ◽  
Yue Jie Xu

In this paper, a cable reinforcement structure for small scale horizontal axial wind turbines is proposed. Shock-vibration tests were performed on the cable reinforced structure with different parameters of cable installation. The first order frequency of the blade was chosen to represent the stiffness of the blade rotor. According to the results, an optimum location of cable reinforcement exists at around 1/3 length of the wind turbine blade, and the first order frequency of the blade rotor will rise with the tension of the cable in a certain range. Further analysis showed that besides improving the reliability of the wind turbine rotors, the cable reinforcement structure also provides a possibility to use cheaper materials for blade manufacturing and also control the noise level of small scale horizontal axial wind turbines.


Sign in / Sign up

Export Citation Format

Share Document