scholarly journals On the effects of inter-farm interactions at the offshore wind farm Alpha Ventus

2021 ◽  
Vol 6 (6) ◽  
pp. 1455-1472
Author(s):  
Vasilis Pettas ◽  
Matthias Kretschmer ◽  
Andrew Clifton ◽  
Po Wen Cheng

Abstract. The energy transition means that more and more wind farms are being built in favorable offshore sites like the North Sea. The wind farms affect each other as they interact with the boundary layer flow. This phenomenon is a topic of current research by the industry and academia as it can have significant technical and financial impacts. In the present study, we use data from the Alpha Ventus wind farm site to investigate the effects of inter-farm interactions. Alpha Ventus is the first offshore German wind farm located in the North Sea with a fully equipped measurement platform, FINO1, in the near vicinity. We look at the effects on the wind conditions measured at FINO1 before and after the beginning of operation of the neighboring farms. We show how measured quantities like turbulence intensity, wind speed distributions, and wind shear are evolving from the period when the park was operating alone in the area to the period when farms were built and operate in close proximity (1.4–15 km). Moreover, we show how the wind turbine's response in terms of loads and generator and pitch activity is affected using data from a turbine that is in the vicinity of the mast. The results show the wake effects in the directions influenced by the wind farms according to their distance with increased turbulence intensity, reduced wind speeds, and increased structural loading.

2021 ◽  
Author(s):  
Vasilis Pettas ◽  
Matthias Kretschmer ◽  
Andrew Clifton ◽  
Po Wen Cheng

Abstract. The energy transition means that more and more wind farms are being built in favorable offshore sites like the North Sea. The wind farms affect each other as they interact with the boundary layer flow. This phenomenon is a topic of current research by the industry and academia as it can have significant technical and financial impacts. In this study we use data from the Alpha Ventus wind farm site to investigate the effects of inter-farm interactions. Alpha Ventus is the first offshore German wind farm located at the North Sea with a fully equipped measurement platform FINO1 in the near vicinity. We look at the effects on the wind conditions measured at FINO1 before and after the beginning of operation of the neighboring farms. We show how measured quantities like turbulence intensity, wind speed distributions, and wind shear are evolving from the period where the park was operating alone in the area to the period where farms were built and operate in close proximity (1.4–15 km). Moreover, we show how the wind turbine performance is affected using data from a turbine that is in the vicinity of the mast. The results show the wake effects in the directions influenced by the wind farms according to their distance with increased turbulence intensity, reduced wind speeds, and increased structural loading.


2020 ◽  
Vol 9 (2) ◽  
pp. 96 ◽  
Author(s):  
Gusatu ◽  
Yamu ◽  
Zuidema ◽  
Faaij

Over the last decade, the accelerated transition towards cleaner means of producing energy has been clearly prioritised by the European Union through large-scale planned deployment of wind farms in the North Sea. From a spatial planning perspective, this has not been a straight-forward process, due to substantial spatial conflicts with the traditional users of the sea, especially with fisheries and protected areas. In this article, we examine the availability of offshore space for wind farm deployment, from a transnational perspective, while taking into account different options for the management of the maritime area through four scenarios. We applied a mixed-method approach, combining expert knowledge and document analysis with the spatial visualisation of existing and future maritime spatial claims. Our calculations clearly indicate a low availability of suitable locations for offshore wind in the proximity of the shore and in shallow waters, even when considering its multi-use with fisheries and protected areas. However, the areas within 100 km from shore and with a water depth above –120 m attract greater opportunities for both single use (only offshore wind farms) and multi-use (mainly with fisheries), from an integrated planning perspective. On the other hand, the decrease of energy targets combined with sectoral planning result in clear limitations to suitable areas for offshore wind farms, indicating the necessity to consider areas with a water depth below –120 m and further than 100 km from shore. Therefore, despite the increased costs of maintenance and design adaptation, the multi-use of space can be a solution for more sustainable, stakeholder-engaged and cost-effective options in the energy deployment process. This paper identifies potential pathways, as well as challenges and opportunities for future offshore space management with the aim of achieving the 2050 renewable energy targets.


2021 ◽  
Vol 168 (10) ◽  
Author(s):  
Jens A. van Erp ◽  
E. Emiel van Loon ◽  
Kees J. Camphuysen ◽  
Judy Shamoun-Baranes

AbstractThe expanding development of offshore wind farms brings a growing concern about the human impact on seabirds. To assess this impact a better understanding of offshore bird abundance is needed. The aim of this study was to investigate offshore bird abundance in the breeding season and model the effect of temporally predictable environmental variables. We used a bird radar, situated at the edge of a wind farm (52.427827° N, 4.185345° E), to record hourly aerial bird abundance at the North Sea near the Dutch coast between May 1st and July 15th in 2019 and 2020, of which 1879 h (51.5%) were analysed. The effect of sun azimuth, week in the breeding season, and astronomic tide was evaluated using generalized additive modelling. Sun azimuth and week in the breeding season had a modest and statistically significant (p < 0.001) effect on bird abundance, while astronomic tide did not. Hourly predicted abundance peaked after sunrise and before sunset, and abundance increased throughout the breeding season until the end of June, after which it decreased slightly. Though these effects were significant, a large portion of variance in hourly abundance remained unexplained. The high variability in bird abundance at scales ranging from hours up to weeks emphasizes the need for long-term and continuous data which radar technology can provide.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Naveed Akhtar ◽  
Beate Geyer ◽  
Burkhardt Rockel ◽  
Philipp S. Sommer ◽  
Corinna Schrum

AbstractThe European Union has set ambitious CO2 reduction targets, stimulating renewable energy production and accelerating deployment of offshore wind energy in northern European waters, mainly the North Sea. With increasing size and clustering, offshore wind farms (OWFs) wake effects, which alter wind conditions and decrease the power generation efficiency of wind farms downwind become more important. We use a high-resolution regional climate model with implemented wind farm parameterizations to explore offshore wind energy production limits in the North Sea. We simulate near future wind farm scenarios considering existing and planned OWFs in the North Sea and assess power generation losses and wind variations due to wind farm wake. The annual mean wind speed deficit within a wind farm can reach 2–2.5 ms−1 depending on the wind farm geometry. The mean deficit, which decreases with distance, can extend 35–40 km downwind during prevailing southwesterly winds. Wind speed deficits are highest during spring (mainly March–April) and lowest during November–December. The large-size of wind farms and their proximity affect not only the performance of its downwind turbines but also that of neighboring downwind farms, reducing the capacity factor by 20% or more, which increases energy production costs and economic losses. We conclude that wind energy can be a limited resource in the North Sea. The limits and potentials for optimization need to be considered in climate mitigation strategies and cross-national optimization of offshore energy production plans are inevitable.


Wind Energy ◽  
2016 ◽  
Vol 20 (4) ◽  
pp. 637-656 ◽  
Author(s):  
Michele Martini ◽  
Raúl Guanche ◽  
Iñigo J. Losada ◽  
César Vidal

2020 ◽  
Author(s):  
Corinna Schrum ◽  
Naveed Akhtar ◽  
Nils Christiansen ◽  
Jeff Carpenter ◽  
Ute Daewel ◽  
...  

&lt;p&gt;The North Sea is a world-wide hot-spot in offshore wind energy production and installed capacity is rapidly increasing. Current and potential future developments raise concerns about the implications for the environment and ecosystem. Offshore wind farms change the physical environment across scales in various ways, which have the potential to modify biogeochemical fluxes and ecosystem structure. The foundations of wind farms cause oceanic wakes and sediment fluxes into the water column. Oceanic wakes have spatial scales of about O(1km) and structure local ecosystems within and in the vicinity of wind farms. Spatially larger effects can be expected from wind deficits and atmospheric boundary layer turbulence arising from wind farms. Wind disturbances extend often over muliple tenths of kilometer and are detectable as large scale wind wakes. Moreover, boundary layer disturbances have the potential to change the local weather conditions and foster e.g. local cloud development. The atmospheric changes in turn changes ocean circulation and turbulence on the same large spatial scales and modulate ocean nutrient fluxes. The latter directly influences biological productivity and food web structure. These cascading effects from atmosphere to ocean hydrodynamics, biogeochemistry and foodwebs are likely underrated while assessing potential and risks of offshore wind.&lt;/p&gt;&lt;p&gt;We present latest evidence for local to regional environmental impacts, with a focus on wind wakes and discuss results from observations, remote sensing and modelling.&amp;#160; Using a suite of coupled atmosphere, ocean hydrodynamic and biogeochemistry models, we quantify the impact of large-scale offshore wind farms in the North Sea. The local and regional meteorological effects are studied using the regional climate model COSMO-CLM and the coupled ocean hydrodynamics-ecosystem model ECOSMO is used to study the consequent effects on ocean hydrodynamics and ocean productivity. Both models operate at a horizontal resolution of 2km.&lt;/p&gt;


2020 ◽  
Author(s):  
Nils Christiansen ◽  
Ute Daewel ◽  
Corinna Schrum ◽  
Jeff Carpenter ◽  
Bughsin Djath ◽  
...  

&lt;p&gt;The production of renewable offshore wind energy in the North Sea increases rapidly, including development in ecologically significant regions. Recent studies identified implications like large-scale wind wake effects and mixing of the water column induced by wind turbines foundations. Depending on atmospheric stability, wind wakes imply changes in momentum flux and increased turbulence up to 70 km downstream, affecting the local conditions (e.g. wind speed, cloud development) near offshore wind farms. Atmospheric wake effects likely translate to the sea-surface boundary layer and hence influence vertical transport in the surface mixing layer. Changes in ocean stratification raise concerns about substantial consequences for local hydrodynamic and biogeochemical processes as well as for the marine ecosystem.&lt;br&gt;Using newly developed wind wake parametrisations together with the unstructured-grid model SCHISM and the biogeochemistry model ECOSMO, this study addresses windfarming impacts in the North Sea for future offshore wind farm scenarios. We focus on wind wake implications on ocean dynamics as well as on changes in tidal mixing fronts near the Dogger Bank and potential ecological consequences. At this, we create important knowledge on how the cross-scale wind farm impacts can be modelled suitably on the system scale.&lt;/p&gt;


2015 ◽  
Vol 528 ◽  
pp. 257-265 ◽  
Author(s):  
C Stenberg ◽  
JG Støttrup ◽  
M van Deurs ◽  
CW Berg ◽  
GE Dinesen ◽  
...  

2018 ◽  
Author(s):  
Jens N. Sørensen ◽  
Gunner C. Larsen

Abstract. The present work assesses the potential of a massive exploitation of offshore wind power in the North Sea by combining a meteorological model with a cost model that includes a bathymetric analysis of the water depth of the North Sea. The overall objective is to assess if the wind power in the North Sea can deliver the total consumption of electricity in Europe and to what prize as compared to conventional onshore wind energy. The meteorological model is based on the assumption that the exploited area is so large, that the wind field between the turbines is in equilibrium with the atmospheric boundary layer. This makes it possible to use momentum analysis to determine the mutual influence between the atmospheric boundary layer and the wind farm, with the wind farm represented by an average horizontal force component corresponding to the thrust. The cost model includes expressions for the most essential wind farm cost elements, such as costs of wind turbines, support structures, cables and electrical substations, as well as operation and maintenance as function of rotor size, interspatial distance between the turbines, and water depth. The numbers used in the cost model are based on previous experience from offshore wind farms, and is therefore somewhat conservative. The analysis shows that the lowest energy cost is obtained for a configuration of large wind turbines erected with an interspatial distance of about eight rotor diameters. A part of the analysis is devoted to assessing the relative costs of the various elements of the cost model in order to determine the components with the largest potential for reducing the cost price. As an overall finding, it is shown that the power demand of Europe, which is 0.4 TW or about 3500 TWh/year, can be fulfilled by exploiting an area of 190.000 km2, corresponding to about 1/3 of the North Sea, with 100.000 wind turbines of generator size 13 MW on water depths up to 45 m at a cost price of about 7.5 €cents/kWh.


Sign in / Sign up

Export Citation Format

Share Document