scholarly journals Factors Affecting the Design and Economic Operation of Distribution Networks and Its Investigation in the 0.4 KV Distribution Network of Ghazni City

2021 ◽  
Vol 3 (27) ◽  
pp. 101-115
Author(s):  
Massoud Danishmal ◽  

The design of power distribution systems should be such that it can technically respond to the increase in electricity demand properly and economically, optimally designed and high network reliability. In order to respond to the increase in electricity demand, load forecasting must be done so that in addition to providing the electricity needed by customers, expansion of power generation centers, expansion of substations, expansion of transformer stations and selection of their appropriate location can be done optimally. In this article, we first examine the definitions and factors that are technically and economically effective in the economic design of energy distribution systems. And in the next stage, we will see whether these above-mentioned effective factors are considered in the 0.4 kV distribution network of Ghazni city or not.

2021 ◽  
Vol 17 (2) ◽  
pp. 212-218
Author(s):  
Mahdi Mozaffarilegha ◽  
Ehsan Damaneh

Selection of the best type and most suitable size of conductors is essential for designing and optimizing the distribution network. In this paper, an effective method has been proposed for proper selection and incorporation of conductors in the feed part of a radial electricity distribution network considering the depreciation effect of conductors. Increasing the usability of the electric energy of the power grid for the subscribers has been considered per load increment regarding the development of the country. Optimal selection and reconstruction of conductors in the power distribution radio network have been performed through a smart method for minimizing the costs related to annual losses and investment for renovation of lines by imperialist competitive algorithm (ICA) to improve the productivity of the power distribution network. Backward/forward sweep load flow method has been used to solve the load flow problem in the power distribution networks. The mentioned optimization method has been tested on DAZ feeder in Ghaleganj town as test.


2018 ◽  
Vol 2018 ◽  
pp. 1-19 ◽  
Author(s):  
Khalid Mohammed Saffer Alzaidi ◽  
Oguz Bayat ◽  
Osman N. Uçan

The efficient planning and operation of power distribution systems are becoming increasingly significant with the integration of renewable energy options into power distribution networks. Keeping voltage magnitudes within permissible ranges is vital; hence, control devices, such as tap changers, voltage regulators, and capacitors, are used in power distribution systems. This study presents an optimization model that is based on three heuristic approaches, namely, particle swarm optimization, imperialist competitive algorithm, and moth flame optimization, for solving the voltage deviation problem. Two different load profiles are used to test the three modified algorithms on IEEE 123- and IEEE 13-bus test systems. The proposed optimization model uses three different cases: Case 1, changing the tap positions of the regulators; Case 2, changing the capacitor sizes; and Case 3, integrating Cases 1 and 2 and changing the locations of the capacitors. The numerical results of the optimization model using the three heuristic algorithms are given for the two specified load profiles.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1202
Author(s):  
Krzysztof Piatek ◽  
Andrzej Firlit ◽  
Krzysztof Chmielowiec ◽  
Mateusz Dutka ◽  
Szymon Barczentewicz ◽  
...  

Quality of power supply in power distribution systems requires continuous measurement using power quality analyzers installed in the grid. The paper reviews the published methods for optimal location of metering points in distribution systems in the context of power quality metering and assessment. Three methods have been selected for detailed analysis and comparative tests. It has been found that utilization of the methods is possible, but their performance varies highly depending on the test grid’s topology. Since the methods rely on the state estimation approach, their performance is strictly related to observability analysis. It has been found that standard observability analysis used for typical state estimation problem yields ambiguous results when applied to power quality assessment. Inherited properties of the selected methods are also analyzed, which allows for the formulation of general recommendations about optimal selection of metering points in a distribution system.


Author(s):  
Sadeeb Simon Ottenburger

The generation and supply of electricity is currently about to undergo a fundamental transition that includes extensive development of smart grids. Smart grids are huge and complex networks consisting of a vast number of devices and entities which are connected with each other. This fact opens new variations of disruption scenarios which can increase the vulnerability of a power distribution network. However, the network topology of a smart grid has significant effects on urban resilience particularly referring to the adequate provision of infrastructures whereby the way in which a distribution network is divided into interconnected microgrids is of particular importance. Such decompositions enable the systematic protection of important infrastructures and furthermore allow new forms of resilient power supply avoiding large-scale power blackouts. Therefore, the authors introduce a concept of criticality adapted to a power system relying on an advanced metering infrastructure and thereby propose a metric for an integrated resilience assessment of power distribution networks.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Hussein A. Kazem

A growing number of harmonic mitigation techniques are now available including active and passive methods, and the selection of the best-suited technique for a particular case can be a complicated decision-making process. The performance of some of these techniques is largely dependent on system conditions, while others require extensive system analysis to prevent resonance problems and capacitor failure. A classification of the various available harmonic mitigation techniques is presented in this paper aimed at presenting a review of harmonic mitigation methods to researchers, designers, and engineers dealing with power distribution systems.


Sign in / Sign up

Export Citation Format

Share Document