Criticality-Based Designs of Power Distribution Systems

Author(s):  
Sadeeb Simon Ottenburger

The generation and supply of electricity is currently about to undergo a fundamental transition that includes extensive development of smart grids. Smart grids are huge and complex networks consisting of a vast number of devices and entities which are connected with each other. This fact opens new variations of disruption scenarios which can increase the vulnerability of a power distribution network. However, the network topology of a smart grid has significant effects on urban resilience particularly referring to the adequate provision of infrastructures whereby the way in which a distribution network is divided into interconnected microgrids is of particular importance. Such decompositions enable the systematic protection of important infrastructures and furthermore allow new forms of resilient power supply avoiding large-scale power blackouts. Therefore, the authors introduce a concept of criticality adapted to a power system relying on an advanced metering infrastructure and thereby propose a metric for an integrated resilience assessment of power distribution networks.

2018 ◽  
Vol 20 (4) ◽  
pp. 417-429 ◽  
Author(s):  
Satyabrata Dash ◽  
Sukanta Dey ◽  
Deepak Joshi ◽  
Gaurav Trivedi

Purpose The purpose of this paper is to demonstrate the application of river formation dynamics to size the widths of power distribution network for very large-scale integration designs so that the wire area required by power rails is minimized. The area minimization problem is transformed into a single objective optimization problem subject to various design constraints, such as IR drop and electromigration constraints. Design/methodology/approach The minimization process is carried out using river formation dynamics heuristic. The random probabilistic search strategy of river formation dynamics heuristic is used to advance through stringent design requirements to minimize the wire area of an over-designed power distribution network. Findings A number of experiments are performed on several power distribution benchmarks to demonstrate the effectiveness of river formation dynamics heuristic. It is observed that the river formation dynamics heuristic outperforms other standard optimization techniques in most cases, and a power distribution network having 16 million nodes is successfully designed for optimal wire area using river formation dynamics. Originality/value Although many research works are presented in the literature to minimize wire area of power distribution network, these research works convey little idea on optimizing very large-scale power distribution networks (i.e. networks having more than four million nodes) using an automated environment. The originality in this research is the illustration of an automated environment equipped with an efficient optimization technique based on random probabilistic movement of water drops in solving very large-scale power distribution networks without sacrificing accuracy and additional computational cost. Based on the computation of river formation dynamics, the knowledge of minimum area bounded by optimum IR drop value can be of significant advantage in reduction of routable space and in system performance improvement.


2022 ◽  
pp. 1335-1359
Author(s):  
Sadeeb Simon Ottenburger ◽  
Thomas Münzberg ◽  
Misha Strittmatter

The generation and supply of electricity is currently about to undergo a fundamental transition that includes extensive development of smart grids. Smart grids are huge and complex networks consisting of a vast number of devices and entities which are connected with each other. This opens new variations of disruption scenarios which can increase the vulnerability of a power distribution network. However, the network topology of a smart grid has significant effects on urban resilience particularly referring to the adequate provision of infrastructures. Thus, topology massively codetermines the degree of urban resilience, i.e. different topologies enable different strategies of power distribution. Therefore, this article introduces a concept of criticality adapted to a power system relying on an advanced metering infrastructure. The authors propose a two-stage operationalization of this concept that refers to the design phase of a smart grid and its operation mode, targeting at an urban resilient power flow during power shortage.


Author(s):  
Sadeeb Simon Ottenburger ◽  
Thomas Münzberg ◽  
Misha Strittmatter

The generation and supply of electricity is currently about to undergo a fundamental transition that includes extensive development of smart grids. Smart grids are huge and complex networks consisting of a vast number of devices and entities which are connected with each other. This opens new variations of disruption scenarios which can increase the vulnerability of a power distribution network. However, the network topology of a smart grid has significant effects on urban resilience particularly referring to the adequate provision of infrastructures. Thus, topology massively codetermines the degree of urban resilience, i.e. different topologies enable different strategies of power distribution. Therefore, this article introduces a concept of criticality adapted to a power system relying on an advanced metering infrastructure. The authors propose a two-stage operationalization of this concept that refers to the design phase of a smart grid and its operation mode, targeting at an urban resilient power flow during power shortage.


2020 ◽  
Vol 12 (10) ◽  
pp. 4317
Author(s):  
K. Prakash ◽  
F. R. Islam ◽  
K. A. Mamun ◽  
H. R. Pota

A distribution network is one of the main parts of a power system that distributes power to customers. While there are various types of power distribution networks, a recently introduced novel structure of an aromatic network could begin a new era in the distribution levels of power systems and designs of microgrids or smart grids. In order to minimize blackout periods during natural disasters and provide sustainable energy, improve energy efficiency and maintain stability of a distribution network, it is essential to configure/reconfigure the network topology based on its geographical location and power demand, and also important to realize its self-healing function. In this paper, a strategy for reconfiguring aromatic networks based on structures of natural aromatic molecules is explained. Various network structures are designed, and simulations have been conducted to justify the performance of each configuration. It is found that an aromatic network does not need to be fixed in a specific configuration (i.e., a DDT structure), which provides flexibility in designing networks and demonstrates that the successful use of such structures will be a perfect solution for both distribution networks and microgrid systems in providing sustainable energy to the end users.


2021 ◽  
Author(s):  
Chinmay Shah ◽  
Richard Wies

The conventional power distribution network is being transformed drastically due to high penetration of renewable energy sources (RES) and energy storage. The optimal scheduling and dispatch is important to better harness the energy from intermittent RES. Traditional centralized optimization techniques limit the size of the problem and hence distributed techniques are adopted. The distributed optimization technique partitions the power distribution network into sub-networks which solves the local sub problem and exchanges information with the neighboring sub-networks for the global update. This paper presents an adaptive spectral graph partitioning algorithm based on vertex migration while maintaining computational load balanced for synchronization, active power balance and sub-network resiliency. The parameters that define the resiliency metrics of power distribution networks are discussed and leveraged for better operation of sub-networks in grid connected mode as well as islanded mode. The adaptive partition of the IEEE 123-bus network into resilient sub-networks is demonstrated in this paper.


2021 ◽  
Vol 3 (27) ◽  
pp. 101-115
Author(s):  
Massoud Danishmal ◽  

The design of power distribution systems should be such that it can technically respond to the increase in electricity demand properly and economically, optimally designed and high network reliability. In order to respond to the increase in electricity demand, load forecasting must be done so that in addition to providing the electricity needed by customers, expansion of power generation centers, expansion of substations, expansion of transformer stations and selection of their appropriate location can be done optimally. In this article, we first examine the definitions and factors that are technically and economically effective in the economic design of energy distribution systems. And in the next stage, we will see whether these above-mentioned effective factors are considered in the 0.4 kV distribution network of Ghazni city or not.


Electrician ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 33
Author(s):  
Osea Zebua ◽  
Noer Soedjarwanto ◽  
Jemi Anggara

Intisari — Stabilitas tegangan telah menjadi perhatian yang penting dalam operasi jaringan distribusi tenaga listrik. Ketidakstabilan tegangan dapat menyebabkan kerusakan pada peralatan-peralatan listrik bila terjadi dalam waktu yang lama. Makalah ini bertujuan untuk merancang dan membuat peralatan deteksi stabilitas tegangan jangka panjang pada jaringan tegangan rendah. Sensor tegangan dan sensor arus digunakan untuk memperoleh data tegangan dan arus. Mikrokontroler Arduino digunakan untuk memproses perhitungan deteksi stabilitas tegangan jangka panjang dari data tegangan yang diperoleh dari sensor. Hasil deteksi kondisi stabilitas tegangan ditampilkan dengan indikator lampu led. Hasil pengujian pada jaringan distribusi tegangan rendah tiga fasa menunjukkan bahwa peralatan dapat mendeteksi gangguan stabilitas tegangan jangka panjang secara online dan dinamis.Kata kunci — Deteksi, stabilitas tegangan jangka panjang, jaringan distribusi tegangan rendah. Abstract — Voltage stability has become important concern in the operation of electric power distribution networks. Voltage instability can cause damage to electrical equipments if it occurs for a long time. This paper aims to design and build long-term voltage stability detection equipment on low-voltage network. Voltage sensors and current sensors are used to obtain voltage and current data. The Arduino microcontroller is used to process calculation of long-term voltage stability detection from data obtained from the sensors. The results of detection of voltage stability conditions are displayed with the LED indicators. Test result on three-phase low-voltage distribution network shows that equipment can detect long–term voltage stability disturbance online and dynamically.Keywords— Detection, long-term voltage stability, low-voltage distribution network.


Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3917 ◽  
Author(s):  
Giovanni Artale ◽  
Antonio Cataliotti ◽  
Valentina Cosentino ◽  
Dario Di Cara ◽  
Salvatore Guaiana ◽  
...  

The evolution of modern power distribution systems into smart grids requires the development of dedicated state estimation (SE) algorithms for real-time identification of the overall system state variables. This paper proposes a strategy to evaluate the minimum number and best position of power injection meters in radial distribution systems for SE purposes. Measurement points are identified with the aim of reducing uncertainty in branch power flow estimations. An incremental heuristic meter placement (IHMP) approach is proposed to select the locations and total number of power measurements. The meter placement procedure was implemented for a backward/forward load flow algorithm proposed by the authors, which allows the evaluation of medium-voltage power flows starting from low-voltage load measurements. This allows the reduction of the overall costs of measurement equipment and setup. The IHMP method was tested in the real 25-bus medium-voltage (MV) radial distribution network of the Island of Ustica (Mediterranean Sea). The proposed method is useful both for finding the best measurement configuration in a new distribution network and also for implementing an incremental enhancement of an existing measurement configuration, reaching a good tradeoff between instrumentation costs and measurement uncertainty.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4643 ◽  
Author(s):  
Vasileios Evangelopoulos ◽  
Panagiotis Karafotis ◽  
Pavlos Georgilakis

The efficient spatial load forecasting (SLF) is of high interest for the planning of power distribution networks, mainly in areas with high rates of urbanization. The ever-present spatial error of SLF arises the need for probabilistic assessment of the long-term point forecasts. This paper introduces a probabilistic SLF framework with prediction intervals, which is based on a hierarchical trending method. More specifically, the proposed hierarchical trending method predicts the magnitude of future electric loads, while the planners’ knowledge is used to improve the allocation of future electric loads, as well as to define the year of introduction of new loads. Subsequently, the spatial error is calculated by means of root-mean-squared error along the service territory, based on which the construction of the prediction intervals of the probabilistic forecasting part takes place. The proposed probabilistic SLF is introduced to serve as a decision-making tool for regional planners and distribution network operators. The proposed method is tested on a real-world distribution network located in the region of Attica, Athens, Greece. The findings prove that the proposed method shows high spatial accuracy and reduces the spatial error compared to a business-as-usual approach.


2010 ◽  
Vol 19 (01) ◽  
pp. 45-58 ◽  
Author(s):  
SAJAD NAJAFI RAVADANEGH ◽  
ARASH VAHIDNIA ◽  
HOJAT HATAMI

Optimal planning of large-scale distribution networks is a multiobjective combinatorial optimization problem with many complexities. This paper proposes the application of improved genetic algorithm (GA) for the optimal design of large-scale distribution systems in order to provide optimal sizing and locating of the high voltage (HV) substations and medium voltage (MV) feeders routing, using their corresponding fixed and variable costs associated with operational and optimization constraints. The novel approach presented in the paper, solves hard satisfactory optimization problems with different constraints in large-scale distribution networks. This paper presents a new concept based on MST in graph theory and GA for optimal locating of the HV substations and MV feeders routing in a real-size distribution network. Minimum spanning tree solved with Prim's algorithm is employed to generate a set of feasible population. In the present article, to reduce computational burden and avoid huge search space leading to infeasible solutions, special coding method is generated for GA operators to solve optimal feeders routing. The proposed coding method guarantees the validity of the solution during the progress of the GA toward the global optimal solution. The developed GA-based software is tested in a real-size large-scale distribution system and the well-satisfactory results are presented.


Sign in / Sign up

Export Citation Format

Share Document