scholarly journals Researching of the concentration distribution of soluble layers when mixed in the weight condition

10.5219/1129 ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 581-592
Author(s):  
Igor Yaroslavovych Stadnyk ◽  
Juilia Pankiv ◽  
Petro Havrylko ◽  
Halina Karpyk

The analytical and experimental analysis of the processes associated with the formation of structural systems, which includes adsorption, its main paths of formation, patterns of influence on the structure of the environment and its behavior at deformation influences is carried out. The ways of choosing the optimal variant of the adsorption diffusion process for providing the maximum or minimum value of parameters (criterion) are proposed. The physical essence of the relation of the length of the sorbent layer with the time of its protective action (number of bound substance) is considered, which allows to practically characterize the work of the sorbent layer under dynamic conditions. It is noted that the determination of dynamic combined power flow influences during the process of mixing of components plays an important role in the structure formation of the suspension and promotes the construction of calculations for the construction of mixing equipment. The obtained data give an answer a series of questions about the theory of adsorption and diffusion (adsorption actions of van der Walsh forces on surfaces) and the ability to regulate the effect of combined power flows directly affect these process transformations (concentrations). For a illustration and understanding of the general execution of research, depending on the method of applying force, the degree of its previous dispersion and its physical and mechanical properties, a scheme of causal relationships between components and parameters that determine the change in the structure of the components in mixing process on a new discrete machine. The principle of discrete-momentum mixing of components in the weight condition and mechanical influence of the formable working body is considered. Based on the process of mixing the components in the working chamber of the machine, a mathematical model is proposed.

2014 ◽  
Vol 42 (4) ◽  
pp. 290-304
Author(s):  
Rajarajan Aiyengar ◽  
Jyoti Divecha

ABSTRACT The blends of natural rubber (NR), polybutadiene rubber (BR), and other forms of rubbers are widely used for enhancing the mechanical and physical properties of rubber compounds. Lots of work has been done in conditioning and mixing of NR/BR blends to improve the properties of its rubber compounds and end products such as tire tread. This article employs response surface methodology designed experiments in five factors; high abrasion furnace carbon black (N 330), aromatic oil, NR/BR ratio, sulfur, and N-oxydiethylene-2-benzothiazole sulfenamide for determination of combined and second order effects of the significant factors leading to simultaneous optimization of the NR/BR blend system. One of the overall optimum of eight properties existed at carbon 44 phr, oil 6.1 phr, NR/BR 78/22 phr with the following values of properties: tensile strength (22 MPa), elongation at break (528%), tear resistance (30 kg/mm), rebound resilience (67%), moderate hardness (68 International rubber hardness degrees) with low heat buildup (17 °C), permanent set (12%), and abrasion loss (57 mm3). More optimum combinations can easily be determined from the NR/BR blend system models contour plots.


2014 ◽  
Vol 62 (1) ◽  
pp. 129-137
Author(s):  
A. Sawicki ◽  
J. Mierczyński

Abstract A basic set of experiments for the determination of mechanical properties of sands is described. This includes the determination of basic physical and mechanical properties, as conventionally applied in soil mechanics, as well as some additional experiments, which provide further information on mechanical properties of granular soils. These additional experiments allow for determination of steady state and instability lines, stress-strain relations for isotropic loading and pure shearing, and simple cyclic shearing tests. Unconventional oedometric experiments are also presented. Necessary laboratory equipment is described, which includes a triaxial apparatus equipped with local strain gauges, an oedometer capable of measuring lateral stresses and a simple cyclic shearing apparatus. The above experiments provide additional information on soil’s properties, which is useful in studying the following phenomena: pre-failure deformations of sand including cyclic loading compaction, pore-pressure generation and liquefaction, both static and caused by cyclic loadings, the effect of sand initial anisotropy and various instabilities. An important feature of the experiments described is that they make it possible to determine the initial state of sand, defined as either contractive or dilative. Experimental results for the “Gdynia” model sand are shown.


2021 ◽  
Vol 13 (3) ◽  
pp. 1569
Author(s):  
Namki Choi ◽  
Byongjun Lee ◽  
Dohyuk Kim ◽  
Suchul Nam

System strength is an important concept in the integration of renewable energy sources (RESs). However, evaluating system strength is becoming more ambiguous due to the interaction of RESs. This paper proposes a novel scheme to define the actual interaction boundaries of RESs using the power flow tracing strategy. Based on the proposed method, the interaction boundaries of RESs were identified at the southwest side of Korea Electric Power Corporation (KEPCO) systems. The test results show that the proposed approach always provides the identical interaction boundaries of RESs in KEPCO systems, compared to the Electric Reliability Council of Texas (ERCOT) method. The consistent boundaries could be a guideline for power-system planners to assess more accurate system strength, considering the actual interactions of the RESs.


Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 427 ◽  
Author(s):  
Sherif S. M. Ghoneim

The continuity of transformer operation is very necessary for utilities to maintain a continuity of power flow in networks and achieve a desired revenue. Most failures in a transformer are due to the degradation of the insulating system, which consists of insulating oil and paper. The degree of polymerization (DP) is a key detector of insulating paper state. Most research in the literature has computed the DP as a function of furan compounds, especially 2-furfuraldehyde (2-FAL). In this research, a prediction model was constructed based on some of most periodical tests that were conducted on transformer insulating oil, which were used as predictors of the insulating paper state. The tests evaluated carbon monoxide (CO), carbon dioxide (CO2), breakdown voltage (VBD), interfacial tension (IF), acidity (ACY), moisture (M), oil color (OC), and 2-furfuraldehyde (2-FAL). The DP, which was used as the key indicator for the paper state, was categorized into five classes labeled 1, 2, 3, 4, and 5 to express the insulating paper normal aging rate, accelerating aging rate, excessive aging danger zone, high risk of failure, and the end of expected life, respectively. The classification techniques were applied to the collected data samples to construct a prediction model for the insulating paper state, and the results revealed that the fine tree was the best classifier of the data samples, with a 96.2% prediction accuracy.


1986 ◽  
Vol 71 ◽  
Author(s):  
I. Suni ◽  
M. Finetti ◽  
K. Grahn

AbstractA computer model based on the finite element method has been applied to evaluate the effect of the parasitic area between contact and diffusion edges on end resistance measurements in four terminal Kelvin resistor structures. The model is then applied to Al/Ti/n+ Si contacts and a value of contact resistivity of Qc = 1.8×10−7.Ωcm2 is derived. For comparison, the use of a self-aligned structure to avoid parasitic effects is presented and the first experimental results obtained on Al/Ti/n+Si and Al/CoSi2/n+Si contacts are shown and discussed.


Sign in / Sign up

Export Citation Format

Share Document