scholarly journals Estimation of Influence of ESP on LCV Active Safety in Condition of Curvilinear Movement

Author(s):  
Anton Tumasov ◽  
Andrey Vashurin ◽  
Eugeny Toropov ◽  
Yury Trusov ◽  
Pavel Moshkov
Keyword(s):  
2013 ◽  
Vol 40 (17) ◽  
pp. 6714
Author(s):  
Vicente Milanés ◽  
David F. Llorca ◽  
Jorge Villagrá ◽  
Joshue Pérez ◽  
Ignacio Parra ◽  
...  

Author(s):  
Takashi Sato ◽  
Keiji Matsumoto ◽  
Kenji Hosomi ◽  
Keisuke Taguchi

iB1350 stands for an innovative, intelligent and inexpensive boiling water reactor 1350. It is the first Generation III.7 reactor after the Fukushima Daiichi accident. It has incorporated lessons learned from the Fukushima Daiichi accident and Western European Nuclear Regulation Association safety objectives. It has innovative safety to cope with devastating natural disasters including a giant earthquake, a large tsunami and a monster hurricane. The iB1350 can survive passively such devastation and a very prolonged station blackout without any support from the outside of a site up to 7 days even preventing core melt. It, however, is based on the well-established proven Advance Boiling Water Reactor (ABWR) design. The nuclear steam supply system is exactly the same as that of the current ABWR. As for safety design it has a double cylinder reinforced concrete containment vessel (Mark W containment) and an in-depth hybrid safety system (IDHS). The Mark W containment has double fission product confinement barriers and the in-containment filtered venting system (IFVS) that enable passively no emergency evacuation outside the immediate vicinity of the plant for a severe accident (SA). It has a large volume to hold hydrogen, a core catcher, a passive flooding system and an innovative passive containment cooling system (iPCCS) establishing passively practical elimination of containment failure even in a long term. The IDHS consists of 4 division active safety systems for a design basis accident, 2 division active safety systems for a SA and built-in passive safety systems (BiPSS) consisting of an isolation condenser (IC) and the iPCCS for a SA. The IC/PCCS pools have enough capacity for 7-day grace period. The IC/PCCS heat exchangers, core and spent fuel pool are enclosed inside the containment vessel (CV) building and protected against a large airplane crash. The iB1350 can survive a large airplane crash only by the CV building and the built-in passive safety systems therein. The dome of the CV building consists of a single wall made of steel and concrete composite. This single dome structure facilitates a short-term construction period and cost saving. The CV diameter is smaller than that of most PWR resulting in a smaller R/B. Each active safety division includes only one emergency core cooling system (ECCS) pump and one emergency diesel generator (EDG). Therefore, a single failure of the EDG never causes multiple failures of ECCS pumps in a safety division. The iB1350 is based on the proven ABWR technology and ready for construction. No new technology is incorporated but design concept and philosophy are initiative and innovative.


2000 ◽  
Author(s):  
Rolf Povel ◽  
Horst Bergmann ◽  
Egon-Christian Von Glasner ◽  
Helmut Marwitz

Sign in / Sign up

Export Citation Format

Share Document