scholarly journals Numerical Study of Bilge Keel Length Variations of Floating Breakwater to Optimize Transmission Coefficient

Author(s):  
Haryo Armono ◽  
Ketut Suastika ◽  
Asfarur Ridlwan ◽  
Tito Biaperi
Kapal ◽  
2021 ◽  
Vol 18 (1) ◽  
pp. 41-50
Author(s):  
Asfarur Ridlwan ◽  
Haryo Dwito Armono ◽  
Shade Rahmawati ◽  
Tuswan Tuswan

As one of the coastal structures, breakwaters are built to protect the coastal area against waves. The current application of breakwaters is usually conventional breakwaters, such as the rubble mound type. Climate change, which causes tidal variations, sea level height, and unsuitable soil conditions that cause large structural loads, can be solved more economically by employing floating breakwater. In this study, numerical simulations will be conducted by exploring the optimum floating breakwater notched shapes from the Christensen experiment. The comparison of three proposed floating breakwater models, such as square notch (SQ), circular notch (CN), and triangular notch (VN), is compared with standard pontoon (RG) to optimize the transmission coefficient value is analyzed. Numerical simulations are conducted using Computational Fluid Dynamics (CFD) based on the VOF method with Flow 3D Software. Compared to the experimental study, the RG model's validation shows a good result with an error rate of 8.5%. The comparative results of the floating breakwater models are found that the smaller the transmission coefficient value, the more optimal the model. The SQ structure has the smallest transmission coefficient of 0.6248. It can be summarized that the SQ model is the most optimal floating breakwater structure.


2021 ◽  
Vol 9 (4) ◽  
pp. 388
Author(s):  
Huu Phu Nguyen ◽  
Jeong Cheol Park ◽  
Mengmeng Han ◽  
Chien Ming Wang ◽  
Nagi Abdussamie ◽  
...  

Wave attenuation performance is the prime consideration when designing any floating breakwater. For a 2D hydrodynamic analysis of a floating breakwater, the wave attenuation performance is evaluated by the transmission coefficient, which is defined as the ratio between the transmitted wave height and the incident wave height. For a 3D breakwater, some researchers still adopted this evaluation approach with the transmitted wave height taken at a surface point, while others used the mean transmission coefficient within a surface area. This paper aims to first examine the rationality of these two evaluation approaches via verified numerical simulations of 3D heave-only floating breakwaters in regular and irregular waves. A new index—a representative transmission coefficient—is then presented for one to easily compare the wave attenuation performances of different 3D floating breakwater designs.


Author(s):  
Athul Sasikumar ◽  
Arun Kamath ◽  
Onno Musch ◽  
Arne Erling Lothe ◽  
Hans Bihs

In coastal areas, climate change is causing mean sea level rise and more frequent storm surge events. This means the breakwaters are expected to withstand the action of more severe incident waves and larger overtopping rates than they were designed for. Therefore, these impacts may have a negative effect on the functionality such as overtopping above the acceptable limits, in addition to stability of these structures. A breakwater which has been partly damaged by a storm stronger than the design storm has weak spots that can easily be damaged further. One way of protecting these breakwaters subjected to climate change is to build a submerged breakwater on the seaward side. This study focuses on the use of numerical model for optimal dimension of a submerged breakwater to be used as a protective measure for an existing structure. Comparisons are made between transmission coefficient predicted in the numerical model and those calculated from different formulae in literature. The variation in transmission coefficient due to different relative submergence and relative width parameters for waves with different steepness is studied and curves showing the dependence of these parameters on wave transmission are made. These results are then used for a test case in Kiberg, Norway where a submerged breakwater is proposed in front of a existing damaged rubble mound breakwater. The optimal geometry generated on the basis of curves is then implemented in the local-scale finite element wave prediction model, CGWAVE.


2021 ◽  
Author(s):  
Chien Ming Wang ◽  
Huu Phu Nguyen ◽  
Jeong Cheol Park ◽  
Mengmeng Han ◽  
Nagi abdussamie ◽  
...  

<p>Floating breakwaters have been used to protect shorelines, marinas, very large floating structures, dockyards, fish farms, harbours and ports from harsh wave environments. A floating breakwater outperforms its bottom-founded counterpart with respect to its environmental friendliness, cost-effectiveness in relatively deep waters or soft seabed conditions, flexibility for expansion and downsizing and its mobility to be towed away. The effectiveness of a floating breakwater design is assessed by its wave attenuation performance that is measured by the wave transmission coefficient (i.e., the ratio of the transmitted wave height to the incident wave height or the ratio of the transmitted wave energy to the incident wave energy). In some current design guidelines for floating breakwaters, the transmission coefficient is estimated based on the assumption that the realistic ocean waves may be represented by regular waves that are characterized by the significant wave period and wave height of the wave spectrum. There is no doubt that the use of regular waves is simple for practicing engineers designing floating breakwaters. However, the validity and accuracy of using regular waves in the evaluation of wave attenuation performance of floating breakwaters have not been thoroughly discussed in the open literature. This study examines the wave transmission coefficients of floating breakwaters by performing hydrodynamic analysis of some large floating breakwaters in ocean waves modelled as regular waves as well as irregular waves described by a wave spectrum such as the Bretschneider spectrum. The formulation of the governing fluid motion and boundary conditions are based on classical linear hydrodynamic theory. The floating breakwater is assumed to take the shape of a long rectangular box modelled by the Mindlin thick plate theory. The finite element – boundary element method was employed to solve the fluid-structure interaction problem. By considering heave-only floating box-type breakwaters of 200m and 500m in length, it is found that the transmission coefficients obtained by using the regular wave model may be smaller (or larger) than that obtained by using the irregular wave model by up to 55% (or 40%). These significant differences in the transmission coefficient estimated by using regular and irregular waves indicate that simplifying assumption of realistic ocean waves as regular waves leads to significant over/underprediction of wave attenuation performance of floating breakwaters. Thus, when designing floating breakwaters, the ocean waves have to be treated as irregular waves modelled by a wave spectrum that best describes the wave condition at the site. This conclusion is expected to motivate a revision of design guidelines for floating breakwaters for better prediction of wave attenuation performance. Also, it is expected to affect how one carries out experiments on floating breakwaters in a wave basin to measure the wave transmission coefficients.</p>


2012 ◽  
Vol 9 (1) ◽  
pp. 11
Author(s):  
R Balaji

 The hydrodynamic performance of porous breakwaters was studied by numerical analysis to assess reflection and transmission characteristics. The finite-difference method on BOUSS-2D was used to test the efficiency of porous breakwaters. The effects of porosity on reflection and transmission characteristics under the action of regular waves were investigated. The wave elevation time histories obtained from the numerical study were compared to those measured during an experimental study, on the leeward and seaward sides of the porous breakwater and were found to be in close agreement. The reflection coefficient increases, whereas the transmission coefficient decreases with a decrease in the porosity. A model with a porosity of 5.9% showed a maximum reflection coefficient of about 0.7 and a minimum transmission coefficient of 0.3. The details of the numerical method, physical model, model setup and results are discussed in this paper. 


Author(s):  
Shuo Wang ◽  
Xin Wang ◽  
Wai Lok Woo

Response-based green water analysis is carried out on an FPSO model with complicated effects of appendages and attachments. An efficient numerical approach developed and validated in our previous work is adopted in this study to evaluate the green water on FPSO, considering effects from bilge keel, spread mooring and portside risers in frequency domain. To accelerate the numerical study, an artificial neural network (ANN) is developed for nonlinear interpolation. Comparisons are made between relative wave elevation results from response-based analysis and traditional contour line approach using DNV and HDC methods. The response-based analysis using nonlinear model and simplified linear model are also compared to examine if nonlinear effect due to appendages and attachments on FPSO would affect the accuracy of response based analysis.


2018 ◽  
Vol 147 ◽  
pp. 304-317 ◽  
Author(s):  
Gustavo O.Guarniz Avalos ◽  
Juan B.V. Wanderley

Author(s):  
Ghassan Elchahal ◽  
Rafic Younes ◽  
Pascal Lafon

Moored floating breakwaters with a leeward boundary, assimilating the port quay walls are described by a large number of coupled variables. This complicates their design and requires a detailed parametrical and motion analysis to assess their hydrodynamic performance. A diffraction-radiation boundary value problem is developed. It arises from the interaction of linear waves on a moored floating breakwater with a leeward boundary described by a partial reflective sidewall. The effects of the sidewall clearance, structural parameters, mooring lines stiffness, and their angle of inclination on the transmission coefficient and the dynamic motion of the floating breakwater are considered. The transmission coefficient is strongly affected by the motion itself and the allowable length change in the mooring lines.


Sign in / Sign up

Export Citation Format

Share Document