scholarly journals Transmission Coefficient Analysis of Notched Shape Floating Breakwater Using Volume of Fluid Method: A Numerical Study

Kapal ◽  
2021 ◽  
Vol 18 (1) ◽  
pp. 41-50
Author(s):  
Asfarur Ridlwan ◽  
Haryo Dwito Armono ◽  
Shade Rahmawati ◽  
Tuswan Tuswan

As one of the coastal structures, breakwaters are built to protect the coastal area against waves. The current application of breakwaters is usually conventional breakwaters, such as the rubble mound type. Climate change, which causes tidal variations, sea level height, and unsuitable soil conditions that cause large structural loads, can be solved more economically by employing floating breakwater. In this study, numerical simulations will be conducted by exploring the optimum floating breakwater notched shapes from the Christensen experiment. The comparison of three proposed floating breakwater models, such as square notch (SQ), circular notch (CN), and triangular notch (VN), is compared with standard pontoon (RG) to optimize the transmission coefficient value is analyzed. Numerical simulations are conducted using Computational Fluid Dynamics (CFD) based on the VOF method with Flow 3D Software. Compared to the experimental study, the RG model's validation shows a good result with an error rate of 8.5%. The comparative results of the floating breakwater models are found that the smaller the transmission coefficient value, the more optimal the model. The SQ structure has the smallest transmission coefficient of 0.6248. It can be summarized that the SQ model is the most optimal floating breakwater structure.

2014 ◽  
Vol 663 ◽  
pp. 522-531 ◽  
Author(s):  
Adi Maimun ◽  
Mehdi Nakisa ◽  
Ahmad Tarmizi ◽  
Yasser M. Ahmed ◽  
Fatemeh Behrouzi

MultipurposeAmphibiousVehicles(MAV)and other blunt-shaped floating vehicles encounter the problem of a large bow wave forming at high speeds. This wave formation is accompanied by higher resistance and at a critical speed results in bow submergence or swamping. Three new shapes of hull bow design for the multipurpose amphibious vehicle were conducted at several speeds to investigate the hydrodynamic phenomena using Computational Fluid Dynamics (CFD, RANS code) which is applied by Ansys-CFX14.0 and Maxsurf. The vehicle’s hydrodynamic bow shapes were able to break up induced waves and avoid swamping. Comparative results with the vehicle fitted with U-shape, V-shape and Flat-shape of hull bow, showed that the U-shape of the hull bow has reduced the total resistance to 20.3% and 13.6% compared with the V-shape and flat shape respectively. Though, the U-shape of hull bow is capable to increase the amphibious operating life and speed of vehicle. Also it has ability to reduce the vehicle’s required power, fossil fuel consumption and wetted hull surface.


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 606
Author(s):  
Seoeum Han ◽  
Sangyoon Lee ◽  
Bok Jik Lee

This numerical study was conducted to investigate the flow properties in a model scramjet configuration of the experiment in the T4 shock tunnel. In most numerical simulations of flows in shock tunnels, the inflow conditions in the test section are determined by assuming the thermal equilibrium of the gas. To define the inflow conditions in the test section, the numerical simulation of the nozzle flow with the given nozzle reservoir conditions from the experiment is conducted by a thermochemical nonequilibrium computational fluid dynamics (CFD) solver. Both two-dimensional (2D) and three-dimensional (3D) numerical simulations of the flow in a model scramjet were conducted without fuel injection. Simulations were performed for two types of inflow conditions: one for thermochemical nonequilibrium states obtained from the present nozzle simulation and the other for the data available using the thermal equilibrium and chemical nonequilibrium assumptions. The four results demonstrate the significance of the modelling approach for choosing between 2D or 3D, and thermal equilibrium or nonequilibrium.


Author(s):  
H. A. Warda ◽  
E. M. Wahba ◽  
E. A. Selim

An experimental and numerical investigation is carried out to evaluate the performance of alternative pumping ring designs for dual mechanical seals. Both radial-flow and axial-flow pumping rings are considered in the present study. An experimental setup is constructed, and appropriate instrumentation are employed to measure the pressure, temperature, and flow rate of the barrier fluid. A parametric study is carried out to investigate the effect of pump rotational speed, barrier fluid accumulator pressure, and barrier fluid inlet temperature on the performance of the pumping rings. Experiments are also used to evaluate the effect of different geometric parameters such as the radial clearance between the pumping ring and the surrounding gland, and the outlet port orientation. Moreover, a numerical study is conducted to simulate the flow field for the radial pumping ring designs under different operating parameters. The computational fluid dynamics (CFD) model implements a multiple reference frame (MRF) technique, while turbulence is modeled using the standard k-epsilon model. Numerical simulations are also used to visualize the flow of the barrier fluid within the dual seal cavity. Present results indicate that the pump rotational speed and the orientation of the outlet port have a significant effect on the performance of the pumping ring. On the other hand, the effects of barrier fluid accumulator pressure and inlet temperature are minimal on the performance. The study also shows that reducing the radial clearance between the rotating ring and the stationary outer gland would significantly improve the performance of axial pumping rings. Moreover, comparisons between the computational and experimental results show good agreement for pumping ring configurations with tangential outlet (TO) ports and at moderate rotational speeds.


2018 ◽  
Vol 55 (4) ◽  
pp. 652-657 ◽  
Author(s):  
Gabriel Murariu ◽  
Razvan Adrian Mahu ◽  
Adrian Gabriel Murariu ◽  
Mihai Daniel Dragu ◽  
Lucian P. Georgescu ◽  
...  

This article presents the design of a specific unmanned aerial vehicle UAV prototype own building. Our UAV is a flying wing type and is able to take off with a little boost. This system happily combines some major advantages taken from planes namely the ability to fly horizontal, at a constant altitude and of course, the great advantage of a long flight-time. The aerodynamic models presented in this paper are optimized to improve the operational performance of this aerial vehicle, especially in terms of stability and the possibility of a long gliding flight-time. Both aspects are very important for the increasing of the goals� efficiency and for the getting work jobs. The presented simulations were obtained using ANSYS 13 installed on our university� cluster system. In a next step the numerical results will be compared with those during experimental flights. This paper presents the main results obtained from numerical simulations and the obtained magnitudes of the main flight coefficients.


2020 ◽  
Vol 27 (10) ◽  
pp. 1600-1615 ◽  
Author(s):  
Jorge Aramburu ◽  
Raúl Antón ◽  
Alejandro Rivas ◽  
Juan C. Ramos ◽  
Bruno Sangro ◽  
...  

Radioembolization (RE) is a valuable treatment for liver cancer. It consists of administering radioactive microspheres by an intra-arterially placed catheter with the aim of lodging these microspheres, which are driven by the bloodstream, in the tumoral bed. Even though it is a safe treatment, some radiation-induced complications may arise. In trying to detect or solve the possible incidences that cause nontarget irradiation, simulating the particle- hemodynamics in hepatic arteries during RE by computational fluid dynamics (CFD) tools has become a valuable approach. This paper reviews the parameters that influence the outcome of RE and that have been studied via numerical simulations. In this numerical approach, the outcome of RE is regarded as successful if particles reach the artery branches that feed tumor-bearing liver segments. Up to 10 parameters have been reviewed. The variation of each parameter actually alters the hemodynamic pattern in the vicinities of the catheter tip and locally alters the incorporation of the particles into the bloodstream. Therefore, in general, the local influences of these parameters should result in global differences in terms of particle distribution in the hepatic artery branches. However, it has been observed that under some (qualitatively described) appropriate conditions where particles align with blood streamlines, the local influence resulting from a variation of a given parameter vanishes and no global differences are observed. Furthermore, the increasing number of CFD studies on RE suggests that numerical simulations have become an invaluable research tool in the study of RE.


Author(s):  
Roberto Paolucci ◽  
Mauro Aimar ◽  
Andrea Ciancimino ◽  
Marco Dotti ◽  
Sebastiano Foti ◽  
...  

AbstractIn this paper the site categorization criteria and the corresponding site amplification factors proposed in the 2021 draft of Part 1 of Eurocode 8 (2021-draft, CEN/TC250/SC8 Working Draft N1017) are first introduced and compared with the current version of Eurocode 8, as well as with site amplification factors from recent empirical ground motion prediction equations. Afterwards, these values are checked by two approaches. First, a wide dataset of strong motion records is built, where recording stations are classified according to 2021-draft, and the spectral amplifications are empirically estimated computing the site-to-site residuals from regional and global ground motion models for reference rock conditions. Second, a comprehensive parametric numerical study of one-dimensional (1D) site amplification is carried out, based on randomly generated shear-wave velocity profiles, classified according to the new criteria. A reasonably good agreement is found by both approaches. The most relevant discrepancies occur for the shallow soft soil conditions (soil category E) that, owing to the complex interaction of shear wave velocity, soil deposit thickness and frequency range of the excitation, show the largest scatter both in terms of records and of 1D numerical simulations. Furthermore, 1D numerical simulations for soft soil conditions tend to provide lower site amplification factors than 2021-draft, as well as lower than the corresponding site-to-site residuals from records, because of higher impact of non-linear (NL) site effects in the simulations. A site-specific study on NL effects at three KiK-net stations with a significantly large amount of high-intensity recorded ground motions gives support to the 2021-draft NL reduction factors, although the very limited number of recording stations allowing such analysis prevents deriving more general implications. In the presence of such controversial arguments, it is reasonable that a standard should adopt a prudent solution, with a limited reduction of the site amplification factors to account for NL soil response, while leaving the possibility to carry out site-specific estimations of such factors when sufficient information is available to model the ground strain dependency of local soil properties.


2021 ◽  
Vol 9 (4) ◽  
pp. 388
Author(s):  
Huu Phu Nguyen ◽  
Jeong Cheol Park ◽  
Mengmeng Han ◽  
Chien Ming Wang ◽  
Nagi Abdussamie ◽  
...  

Wave attenuation performance is the prime consideration when designing any floating breakwater. For a 2D hydrodynamic analysis of a floating breakwater, the wave attenuation performance is evaluated by the transmission coefficient, which is defined as the ratio between the transmitted wave height and the incident wave height. For a 3D breakwater, some researchers still adopted this evaluation approach with the transmitted wave height taken at a surface point, while others used the mean transmission coefficient within a surface area. This paper aims to first examine the rationality of these two evaluation approaches via verified numerical simulations of 3D heave-only floating breakwaters in regular and irregular waves. A new index—a representative transmission coefficient—is then presented for one to easily compare the wave attenuation performances of different 3D floating breakwater designs.


Sign in / Sign up

Export Citation Format

Share Document