Thickness Distribution of Hemispherical Cup in Meso-Scale Deep Drawing Process

2011 ◽  
Vol 20 (1) ◽  
pp. 36-41 ◽  
Author(s):  
K.S. Lee ◽  
H.K. Jung ◽  
J.B. Kim ◽  
J.H. Kim
Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3993
Author(s):  
Thanh Trung Do ◽  
Pham Son Minh ◽  
Nhan Le

The formability of the drawn part in the deep drawing process depends not only on the material properties, but also on the equipment used, metal flow control and tool parameters. The most common defects can be the thickening, stretching and splitting. However, the optimization of tools including the die and punch parameters leads to a reduction of the defects and improves the quality of the products. In this paper, the formability of the camera cover by aluminum alloy A1050 in the deep drawing process was examined relating to the tool geometry parameters based on numerical and experimental analyses. The results showed that the thickness was the smallest and the stress was the highest at one of the bottom corners where the biaxial stretching was the predominant mode of deformation. The problems of the thickening at the flange area, the stretching at the side wall and the splitting at the bottom corners could be prevented when the tool parameters were optimized that related to the thickness and stress. It was clear that the optimal thickness distribution of the camera cover was obtained by the design of tools with the best values—with the die edge radius 10 times, the pocket radius on the bottom of the die 5 times, and the punch nose radius 2.5 times the sheet thickness. Additionally, the quality of the camera cover was improved with a maximum thinning of 25% experimentally, and it was within the suggested maximum allowable thickness reduction of 45% for various industrial applications after optimizing the tool geometry parameters in the deep drawing process.


2015 ◽  
Vol 813-814 ◽  
pp. 269-273 ◽  
Author(s):  
P. Venkateshwar Reddy ◽  
S. Hari Prasad ◽  
Perumalla Janaki Ramulu ◽  
Sirish Battacharya ◽  
Daya Sindhu Guptha

In recent days deep-drawing is one of the most important methods used for sheet metal forming. The geometries of die/blank holder and punch are one of the parameters for deep-drawing. This paper presents an attempt to determine the effect of different geometries of die/blank holder, punch radii and blank holding force on deep drawing process for the formability of DP Steel of 1mm sheet. The numerical simulations are performed for deep drawing of cylindrical cups at a constant frictional coefficient of 0.12 and different blank holding forces of 10, 15 and 20kN are used. For numerical simulation PAM STAMP 2G a commercial FEM code in which Hollomon’s power law and Hills 1948 yield’s criterion is used. The die/blank holder profile used with an angles of α=0°, 12.5°, 15° and die/punch profile with a radii of R= 6 and 8mm were simulated to determine the influence of punch force and thickness distribution on the limit drawing ratio. The aim of this study is to investigate the effect of tool geometries on drawability of the deep-drawing process.


Author(s):  
M. R. Morovvati ◽  
B. Mollaei-Dariani ◽  
M. Haddadzadeh

The initial blank in the deep drawing process has a simple shape. After drawing, its perimeter shape becomes very complex. If the initial blank shape is designed in such a way that it is formed into the desired shape after the drawing process, not only does it reduces the time of trimming process but it also decreases the raw material needed substantially. In this paper, the genetically optimized neural network system (GONNS) is proposed as a tool to predict the initial blank shape for the desired final shape. Artificial neural networks (ANNs) represent the final blank shape after a training process and genetic algorithms find the optimum initial blank. The finite element method is employed for simulating the multilayer plate deep drawing process to provide training data for ANN. The GONNS results were verified through experiment in which the error was found to be about 0.2 mm. At last, variations of deformation force, thickness distribution, and thickness strain distribution were investigated using optimum blank. The results show 12% reduction in deformation force and more uniform thickness distribution as well as more consistent thickness strain distribution in the optimum blank shape.


2020 ◽  
Vol 20 (1) ◽  
pp. 12-24
Author(s):  
Hani Aziz Ameen

In this paper, the drawability of two-layer (steel-brass) sheets to produce square cup, is investigated through numerical simulations, and experimental tests. Each material has its own benefits and drawbacks in terms of its physical, chemical and mechanical properties, so that the point of this investigation is taking the benefits of different materials, like (low density, high strength and resistibility of corrosion), at the same time and in a one part. ANSYS18 software is used to simulate the deep drawing process of laminated sheet. The deep drawing processes for square cup were carried out under various blank holder loads with different lubrication conditions (dry and lubricant) and with variable layer arrangement. The materials were low carbon steel st1008 and brass CuZn30 sheets with thickness of 0.5mm0and 0.58mm respectively. The thickness of laminated sheet blank was 1.1 mm and its diameter was 83 mm. The drawn cups with less imperfections and satisfactory thickness distribution were formed in this study. It is concluded the greatest thinning appear in the corner of the cup near the punch radius due to extreme stretching take place in this area. Experimental forming load, blank holder load, and thickness distribution are compared with simulation results. Good agreement between experimental and numerical is evident.


2002 ◽  
Vol 124 (2) ◽  
pp. 420-425 ◽  
Author(s):  
Moshe Berger ◽  
Eyal Zussman

The conventional deep drawing process is limited to a certain Limit Drawing Ratio (LDR), beyond which localized wall thinning and rupture occur. One way to increase the LDR is to try to capture the onset of necking and to adjust process parameters in order to delay or avoid necking. This paper describes a method for monitoring the wall thickness of a cup during the deep drawing process. Measurement utilizes a noncontact ultrasound gauge that is located orthogonally to the drawn cup’s wall and is immersed in oil to create an acoustic coupling. Monitoring is based upon a deep drawing process model using a thin blank with a round cross-section. Thickness distribution along a longitudinal axis is predicted and is used as a trajectory to track in-process thinning variations that may lead to tearing. The robustness of the measurement system is examined by applying the technique in different experiments. Results show that in-process measurements correlate well with grid strain analysis of a formed sheet metal part.


2015 ◽  
Vol 639 ◽  
pp. 33-40 ◽  
Author(s):  
Lucian Lazarescu ◽  
Ioan Nicodim ◽  
Dorel Banabic

In the deep drawing process, the blank-holding force (BHF) is an important process parameter affecting the energy consumption and the successful production of parts. In the present work, both experiments and finite element simulations have been conducted to investigate the influence of constant and time variable BHF on drawing force (DF) and thickness distribution in the deep drawing process of cylindrical and square cups. A finite element model was developed in the AutoForm software and validated with experiments. The developed model has been used for the simulation of deep drawing process of AA6016-T4 aluminum alloy sheet. The experimental and numerical results show that, using a variable instead of a constant BHF, the DF can be decreased in the expense of wall thickening.


2015 ◽  
Vol 29 (24) ◽  
pp. 1550141 ◽  
Author(s):  
Feng Li ◽  
Peng Xu ◽  
Xiaochong Sui ◽  
Fujian Zhou

Sealing problems, subsequent cleaning processes and poor force transmission effect etc. series of problems which strongly restrict the development and application of traditional medium pressure-based sheet forming technology. To overcome these problems, the magnetorheological fluid (MRF) can be used as the alternative force transmission medium. In this study, the deep drawing process of a 304 stainless steel sheet using MRF was investigated. The die cavity was filled with MRF and electric current was used to quantitatively adjust the magnetic fields distribution, which then controls the deformation behavior of the forming sheet. As compared to the conventional deep drawing process, experimental results clearly show that significant improvement in the produced sample quality was obtained when using the MRF with the electric current of 2 A. These improvements include: the height of the boundary circle reduces by 20%, the wall thickness distribution is more uniform, the rebound ratio correspondingly reduces from 9.6% to 0.67%, and the degree of sticking mode and the size precision are significantly increased. The results of this study provide scientific guidance to solve the bottleneck in the traditional deep drawing forming technology. The potential applications of the MRF-based new deep drawing technology to improve the product quality were explored.


Sign in / Sign up

Export Citation Format

Share Document