scholarly journals Carrying capacity and cracking resistance at the support zone of halving joints in reinforced concrete beams - Part 2

2020 ◽  
Vol 15 (1) ◽  
Author(s):  
S.R. Mpinzire
Author(s):  
Paolo Foraboschi

Renovation, restoration, remodeling, refurbishment, and retrofitting of build-ings often imply modifying the behavior of the structural system. Modification sometimes includes applying forces (i.e., concentrated loads) to beams that before were subjected to distributed loads only. For a reinforced concrete structure, the new condition causes a beam to bear a concentrated load with the crack pattern that was produced by the distributed loads that acted in the past. If the concentrated load is applied at or near the beam’s midspan, the new shear demand reaches the maximum around the midspan. But around the midspan, the cracks are vertical or quasi-vertical, and no inclined bar is present. So, the actual shear capacity around the midspan not only is low, but also can be substantially lower than the new demand. In order to bring the beam capacity up to the demand, fiber-reinforced-polymer composites can be used. This paper presents a design method to increase the concentrated load-carrying capacity of reinforced concrete beams whose load distribution has to be changed from distributed to concentrated, and an analytical model to pre-dict the concentrated load-carrying capacity of a beam in the strengthened state.


2020 ◽  
pp. 002199832097373
Author(s):  
Fares Jnaid

This paper investigates the effects of different parameters on the live load carrying capacity of concrete beams reinforced with FRP bars. The author performed a parametric study utilizing an innovative numerical approach to inspect the effects of multiple variables such as reinforcement ratio, concrete compressive strength, span to depth ratio, FRP type, and bar diameter on load carrying capacity of FRP reinforced concrete beams. This study concluded that unless the span to height ratio is smaller than 8, tension-controlled sections are impractical as they do not meet code requirements for serviceability. In addition, it is recommended to use higher reinforcement ratios when using larger span to depth ratios and/or when using CFRP reinforcing bars. Moreover, larger number of bars with small diameter is more practical than fewer large diameter bars. Furthermore, this research suggests that increasing the concrete compressive strength is associated with a significant increase in the ultimate flexural capacity of FRP reinforced beams.


2018 ◽  
Vol 183 ◽  
pp. 02002 ◽  
Author(s):  
Jacek Selejdak ◽  
Roman Khmil ◽  
Zinoviy Blikharskyy

The article is devoted to an experimental research of the strength of reinforced concrete beams, and its dependence on a simultaneous influence of a corrosion environment and a loading factor. The tests have been carried out upon reinforced concrete specimens of 2100×200×100 mm size, with a regular reinforcement. The beams are of a span equaling to 1,9m with different reinforcing ratio of beams. The acid environment, namely 10 % H2SO4, was taken as a model of an aggressive environment. Reinforced concrete beams have been tested with and without the co-action of the aggressive environment and loading factor. Beams, which underwent a simultaneous action of the corrosive environment and loading, were loaded to a level 0.7 of its load-carrying capacity. The load-carrying capacity in aggressive environment in all the beams of all the series was achieved in 46-60 days. The influence of the simultaneous action of the aggressive environment and loading on the strength of reinforced-concrete beams has been described in the following work. It is necessary to note that the design code of Ukraine does not allow determining load carrying capacity of the beams affected by corrosion with simultaneous influence of loading with adequate accuracy. The analysis of experimental data has been done and the main directions of the design code’s correction have been formulated.


Author(s):  
Ali Alavizadeh-Farhang ◽  
Johan Silfwerbrand

To study the structural responses of plain and steel fiber-reinforced concrete pavements under combined mechanical and thermal loads, two test series have been conducted with plain and steel fiber-reinforced concrete beams. The magnitude and duration of the differences in the induced stresses caused by traffic load and a positive nonlinear temperature gradient (the top surface was warmer than the bottom surface during the day) may lead to some relaxation of thermal stresses and subsequently increase the load-carrying capacity. Considering the loss of support contact in the interior part of the concrete pavement, the experimental study of combined loading with restrained concrete beams may provide some insight and an indication of whether the superposition of stresses is a proper approach. The beams were subjected to solely thermal, solely mechanical, and combined thermal and mechanical loads while the rotation of the beam at supports was prevented. The results of tests conducted with both plain and steel fiber-reinforced beams showed that the superposition of stresses under combined loading before cracking gave a satisfactory estimation of the load-carrying capacities. The results also showed that the effect of relaxation of stresses due to short-term thermal loads was not noticeable in the load-carrying capacity achieved in tests with combined thermal and mechanical loads. On the contrary, a tendency for reduction of the load-carrying capacity was observed at higher thermal gradients. In addition, the overall structural responses of steel fiber-reinforced concrete beams under mechanical load and a nonlinear temperature gradient combined were similar to the responses of plain concrete beams up to the cracking stage. However, the release of thermal stresses due to cracking and the considerable residual load-carrying capacity after cracking were the most important observations for steel fiber-reinforced concrete beams.


2009 ◽  
Vol 1 (1) ◽  
pp. 23-39 ◽  
Author(s):  
Vidmantas Jokūbaitis ◽  
Linas Juknevičius

The width of normal cracks at the level of tensile reinforcement was calculated according to various methods using the data obtained from experimental tests on reinforced concrete beams (without reinforcement pre-stress), pre-cast reinforced concrete slabs and ribbed roof slabs. Th e numerical results were compared to actual crack widths measured during the experimental tests. Also, the crack widths of pre-stressed reinforced concrete beams were calculated according to various methods and compared with each other. Th e following conclusions were reached based on the analysis of numerical and experimental results: 1) Design stresses in tensile reinforcement calculated according to [STR] and [EC] design codes are very similar, although the calculation of such stresses is more logical and simple according to [EC]. Design stresses calculated according to [RU] are greater due to the estimation of the plastic deformations of concrete in the compressive zone. Th e method proposed by Rozenbliumas (Розенблюмас 1966) estimates tensile concrete above the crack peak, and thus allows a more accurate calculation of stresses in tensile reinforcement (Fig 3). Therefore, the latter stresses in pre-stressed RC beams may be decreased by 10–12 %, when height hct ≠ 0 (Fig 1, c) and ratio M/MRd varies between 0,65 and 0,75; 2) The widths of normal cracks in conventional RC beams (subjected to load that corresponds approx. 70 % of their carrying capacity) calculated according to [STR] and [EC] design codes are almost equal to the experimentally obtained crack widths. When beams and slabs are loaded by approximately 52 % of their carrying capacity, design crack widths wk [EC] are approximately 12 % less than wk [STR], although the design crack width wk [RU] is signifi cantly greater. Here, ratio β in the beams and slabs is equal to 2 and 3.3 respectively. Th erefore, the design code [RU] ensures higher probability that the crack width will not reach the limit value (for environmental class XO and XC1) equal in all design codes mentioned in this article; 3) In case of loaded prestressed reinforced concrete beams, the calculated increases of crack widths wk [EC], wk [RU] and w [5] are greater if compared to wk [STR] (Fig 6). Th e increased reinforcement ratio ρ has more signifi cant infl uence on the increases of crack widths calculated according to other design codes if compared to wk [STR]. Tensile concrete above the crack peak has signifi cant infl uence on the design crack width when pre-stressed RC beams are lightly reinforced (ρ ≤ 0,008); 4) During the evaluation of the state of fl exural RC members, expression (5) could be used for calculating the crack width or a position of the neutral axis when the heights of the crack and the tensile zone above the crack are known (calculated or measured experimentally). Design crack widths w (5) are very similar to the experimentally obtained results.


2015 ◽  
Vol 23 (4) ◽  
pp. 1-7 ◽  
Author(s):  
Jamal Khatib ◽  
Adrian Jefimiuk ◽  
Sammy Khatib

Abstract The flexural properties of reinforced concrete beams containing expanded glass as a partial fine aggregate (sand) replacement are investigated. Four concrete mixes were employed to conduct this study. The fine aggregate was replaced with 0%, 25%, 50% and 100% (by volume) expanded glass. The results suggest that the incorporation of 50% expanded glass increased the workability of the concrete. The compressive strength was decreasing linearly with the increasing amount of expanded glass. The ductility of the concrete beam significantly improved with the incorporation of the expanded glass. However, the load-carrying capacity of the beam and load at which the first crack occurs was reduced. It was concluded that the inclusion of expanded glass in structural concrete applications is feasible.


Sign in / Sign up

Export Citation Format

Share Document