Investigating Effects of Counter-Current Imbibition in Naturally-Fractured Reservoirs by Discrete Fracture Network Simulations

2011 ◽  
Author(s):  
Georg SEIDL ◽  
Philipp LANG ◽  
Stephan MATTHÄI
Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5488
Author(s):  
Leidy Laura Alvarez ◽  
Leonardo José do Nascimento Guimarães ◽  
Igor Fernandes Gomes ◽  
Leila Beserra ◽  
Leonardo Cabral Pereira ◽  
...  

Fluid flow modeling of naturally fractured reservoirs remains a challenge because of the complex nature of fracture systems controlled by various chemical and physical phenomena. A discrete fracture network (DFN) model represents an approach to capturing the relationship of fractures in a fracture system. Topology represents the connectivity aspect of the fracture planes, which have a fundamental role in flow simulation in geomaterials involving fractures and the rock matrix. Therefore, one of the most-used methods to treat fractured reservoirs is the double porosity-double permeability model. This approach requires the shape factor calculation, a key parameter used to determine the effects of coupled fracture-matrix fluid flow on the mass transfer between different domains. This paper presents a numerical investigation that aimed to evaluate the impact of fracture topology on the shape factor and equivalent permeability through hydraulic connectivity (f). This study was based on numerical simulations of flow performed in discrete fracture network (DFN) models embedded in finite element meshes (FEM). Modeled cases represent four hypothetical examples of fractured media and three real scenarios extracted from a Brazilian pre-salt carbonate reservoir model. We have compared the results of the numerical simulations with data obtained using Oda’s analytical model and Oda’s correction approach, considering the hydraulic connectivity f. The simulations showed that the equivalent permeability and the shape factor are strongly influenced by the hydraulic connectivity (f) in synthetic scenarios for X and Y-node topological patterns, which showed the higher value for f (0.81) and more expressive values for upscaled permeability (kx-node = 0.1151 and ky-node = 0.1153) and shape factor (25.6 and 14.5), respectively. We have shown that the analytical methods are not efficient for estimating the equivalent permeability of the fractured medium, including when these methods were corrected using topological aspects.


2009 ◽  
Vol 12 (02) ◽  
pp. 232-242 ◽  
Author(s):  
Tae H. Kim ◽  
David S. Schechter

Summary Matrix porosity is relatively easy to measure and estimate compared to fracture porosity. On the other hand, fracture porosity is highly heterogeneous and very difficult to measure and estimate. When matrix porosity of naturally fractured reservoirs (NFRs) is negligible, it is very important to know fracture porosity to evaluate reservoir performance. Because fracture porosity is highly uncertain, fractal discrete fracture network (FDFN) generation codes were developed to estimate fracture porosity. To reflect scale-dependent characteristics of fracture networks, fractal theories are adopted. FDFN modeling technique enables the systematic use of data obtained from image log and core analysis for estimating fracture porosity. As a result, each fracture has its own fracture aperture distribution, so that generated FDFN are similar to actual fracture systems. The results of this research will contribute to properly evaluating the fracture porosity of NFR where matrix porosity is negligible.


2020 ◽  
Vol 8 (11) ◽  
pp. 4025-4042
Author(s):  
Zhiqiang Li ◽  
Zhilin Qi ◽  
Wende Yan ◽  
Xiaoliang Huang ◽  
Qianhua Xiao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document