scholarly journals Kernel Principal Component Analysis and the construction of non-linear Active Shape Models

Author(s):  
C J Twining ◽  
C J Taylor
2014 ◽  
Vol 1030-1032 ◽  
pp. 1822-1827
Author(s):  
Ning Lv ◽  
Guang Yuan Bai ◽  
Lu Qi Yan ◽  
Yuan Jian Fu

In order to overcome the application limitations of principal component analysis fault diagnose model in non-linear time-varying and reduce computational complexity for process monitoring based on non-linear principal component, we introduced kernel transformation theory of nonlinear space to extract data feature extraction and a fault monitoring model based on kernel principal component analysis (KPCA) for constant value detection was proposed. Through the proper selection of kernel function parameter values, the KPCA model can achieve constant value of process fault detection and has lower computational complexity than other non-linear algorithms. The fault detection experiment for beer fermentation process shows that this method is able to detect process faults in a timely manner and has good real-time performance and accuracy in the batch process of slowly time-varying.


Principal Component analysis (PCA) is one of the important and popular multivariate statistical methods applied over various data modeling applications. Traditional PCA handles linear variance in molecular descriptors or features. Handling complicated data by standard PCA will not be very helpful. This drawback can be handled by introducing kernel matrix over PCA. Kernel Principal Component Analysis (KPCA) is an extension of conventional PCA which handles non-linear hidden patterns exists in variables. It results in computational efficiency for data analysis and data visualization. In this paper, KPCA has been applied over dug-likeness dataset for visualization of non-linear relations exists in variables.


2021 ◽  
Vol 11 (14) ◽  
pp. 6370
Author(s):  
Elena Quatrini ◽  
Francesco Costantino ◽  
David Mba ◽  
Xiaochuan Li ◽  
Tat-Hean Gan

The water purification process is becoming increasingly important to ensure the continuity and quality of subsequent production processes, and it is particularly relevant in pharmaceutical contexts. However, in this context, the difficulties arising during the monitoring process are manifold. On the one hand, the monitoring process reveals various discontinuities due to different characteristics of the input water. On the other hand, the monitoring process is discontinuous and random itself, thus not guaranteeing continuity of the parameters and hindering a straightforward analysis. Consequently, further research on water purification processes is paramount to identify the most suitable techniques able to guarantee good performance. Against this background, this paper proposes an application of kernel principal component analysis for fault detection in a process with the above-mentioned characteristics. Based on the temporal variability of the process, the paper suggests the use of past and future matrices as input for fault detection as an alternative to the original dataset. In this manner, the temporal correlation between process parameters and machine health is accounted for. The proposed approach confirms the possibility of obtaining very good monitoring results in the analyzed context.


2009 ◽  
Vol 147-149 ◽  
pp. 588-593 ◽  
Author(s):  
Marcin Derlatka ◽  
Jolanta Pauk

In the paper the procedure of processing biomechanical data has been proposed. It consists of selecting proper noiseless data, preprocessing data by means of model’s identification and Kernel Principal Component Analysis and next classification using decision tree. The obtained results of classification into groups (normal and two selected pathology of gait: Spina Bifida and Cerebral Palsy) were very good.


Sign in / Sign up

Export Citation Format

Share Document