The Dispersion of Carbon Black in Rubber Part III. The Effect of Dispersion Quality on the Dynamic Mechanical Properties of Filled Natural Rubber

1992 ◽  
Vol 65 (5) ◽  
pp. 1016-1041 ◽  
Author(s):  
A. Y. Coran ◽  
J-B. Donnet

Abstract The Part I of this series described a rapid method for determining the quality of carbon-black dispersion. The second paper (Part II) was concerned with the kinetics of the dispersion of carbon black into natural rubber (dispersion quality as a function of mixing time) in an internal mixer. In this paper we consider the effects of changes in dispersion quality on the dynamic mechanical properties of both unvulcanized and vulcanized natural rubber. The effects of changes in the degree of carbon-black dispersion were measured by using a new prototype moving-die rheometer (which is presently being developed at Monsanto Instruments & Equipment Research Laboratory). By using this prototype rheometer, G′ and G″ were measured as functions of shear-strain amplitude, temperature, and frequency. Increases in the degree of carbon-black dispersion in uncured natural rubber (starting from very poor dispersion quality) give decreases in the values of both G′ and G″. The decrease in dynamic moduli with increases in the degree of carbon-black dispersion might be explained on the basis of a network of agglomerates which exists when the quality of dispersion is extremely poor. In the case of uncured samples, values of G′, measured at low strains (e.g. ±1%), become reduced after the imposition of a larger (±50%) sinusoidal shear strain for a short period of time (e.g. 3 s). Then, with the passage of time, the reduced value of G′ partially recovers. The extent of this recovery increases with increases in the dispersion rating DR. Similar results were obtained with respect to the loss modulus G″. In both cases, the extent of recovery is much less when the carbon black is very poorly dispersed. The unrecoverable proportion of G′ or G″ is also considered to be due to a network composed of mutually interactive agglomerates of carbon black.

1994 ◽  
Vol 67 (5) ◽  
pp. 845-853 ◽  
Author(s):  
A. Mallick ◽  
D. K. Tripathy ◽  
S. K. De

Abstract Increases in dynamic strain amplitude (DSA) causes changes in the dynamic mechanical properties of high abrasion furnace (HAF) carbon black filled polyacrylic acid (PAA) and epoxidised natural rubber (ENR) blends. But the changes are more prominent in comparison to conventional rubber vulcanizates. It is believed that crosslinking between PAA and ENR in the presence of carbon black results in the formation of a network-induced-agglomerate superstructure which, however, breaks down on the application of dynamic strain.


2014 ◽  
Vol 87 (2) ◽  
pp. 320-339 ◽  
Author(s):  
P. Saramolee ◽  
K. Sahakaro ◽  
N. Lopattananon ◽  
W. K. Dierkes ◽  
J. W. M. Noordermeer

ABSTRACT This work investigates the effect of epoxidized low molecular weight natural rubber (ELMWNR) in silica- and carbon black-filled natural rubber (NR) compounds on processing and mechanical and dynamic mechanical properties. The ELMWNRs with different mol% epoxide content were prepared from depolymerization of epoxidized NR using periodic acid in latex state to have a molecular weight in a range of 50 000–60 000 g/mol. Their chemical structures and actual mol% of epoxide were analyzed by 1H NMR. The ELMWNRs were added to the filled NR compounds as compatibilizers at varying loadings from 0 to 15 phr. The addition of ELMWNR decreases compound viscosity and the Payne effect, that is, filler–filler interaction, of the silica-filled compound. In the silica–silane compound and the compound with 28 mol% epoxide (ELMWNR-28), the compound viscosities are comparable. The optimal mechanical properties of silica-filled vulcanizates are obtained at the ELMWNR-28 loading of 10 phr. In contrast, the addition of ELMWNR to a carbon black-filled compound shows only a plasticizing effect. The incorporation of ELMWNR into NR compounds introduces a second glass transition temperature and affects their dynamic mechanical properties. Higher epoxide contents lead to higher loss tangent values of the rubber vulcanizates in the range of the normal service temperature of a tire.


Sign in / Sign up

Export Citation Format

Share Document