Simultaneous Control of 1,4-cis Selectivity and Molecular Weight of Polymer in Polymerization of Butadiene with Co(acac)3/MAO Catalyst

2005 ◽  
Vol 78 (1) ◽  
pp. 143-154 ◽  
Author(s):  
Kiyoshi Endo ◽  
Naoyoshi Hatakeyama

Abstract Simultaneous control of 1,4-cis selective polymerization and molecular weight of polymer in the polymerization of butadiene (BD) with Co(acac)3/MAO catalyst was investigated. The polymerization of BD with the Co(acac)3/MAO catalyst strongly depended on catalyst preparation, and the polymerization rate of BD with Co(acac)3 activated by MAO in the presence of BD was faster than that with previous reported results that the Co(acac)3 activated by MAO in the absence of BD. From a kinetic study, linear relation between ln[BD]0/[BD]t and polymerization time and no induction period for the polymerization were observed in the polymerization of BD with Co(acac)3 activated by MAO in the presence of BD. This indicates that the active site for the polymerization kept constant throughout polymerization. The molecular weights of the polymers increased linearly with polymer yields, and the line passed through the original point. The Mw/Mn of the polymers kept constant during reaction time. The polymerization of BD performed at 0 °C in the Co(acac)3/MAO catalyst gave high molecular weight 1,4-cis poly(BD) (1,4-cis content > 95) and narrow polydispersity (Mw/Mn=1.36). On the basis of these results, it is clear that simultaneous 1,4-cis selective and molecular weight control is possible in the polymerization of BD with the Co(acac)3/MAO catalyst.

2020 ◽  
Vol 02 (02) ◽  
pp. 129-142 ◽  
Author(s):  
Elisabeth Weyandt ◽  
Mathijs F. J. Mabesoone ◽  
Lafayette N. J. de Windt ◽  
E. W. Meijer ◽  
Anja R. A. Palmans ◽  
...  

In polymer chemistry, modulation of sequence and control over chain length are routinely applied to alter and fine-tune the properties of covalent (co)polymers. For supramolecular polymers, the same principles underlying this control have not been fully elucidated up to this date. Particularly, rational control over molecular weight in dynamic supramolecular polymers is not trivial, especially when a cooperative mechanism is operative. We start this review by summarizing how molecular-weight control has been achieved in seminal examples in the field of supramolecular polymerizations. Following this, we propose to classify the avenues taken to control molecular weights in supramolecular polymerizations. We focus on dynamic cooperative supramolecular polymerization as this is the most challenging in terms of molecular weight control. We use a mass-balance equilibrium model to predict how the nature of the interaction of an additive B with the monomers and supramolecular polymers of component A affects the degree of aggregation and the degree of polymerization. We put forward a classification system that distinguishes between B acting as a chain capper, a sequestrator, a comonomer, or an intercalator. We also highlight the experimental methods applied to probe supramolecular polymerization processes, the type of information they provide in relation to molecular weight and degree of aggregation, and how this can be used to classify the role of B. The guidelines and classification delineated in this review to assess and control molecular weights in supramolecular polymers can serve to reevaluate exciting systems present in current literature and contribute to broaden the understanding of multicomponent systems.


Polymer ◽  
2001 ◽  
Vol 42 (13) ◽  
pp. 5515-5521 ◽  
Author(s):  
Alain Durand ◽  
Thierry Lalot ◽  
Maryvonne Brigodiot ◽  
Ernest Maréchal

e-Polymers ◽  
2008 ◽  
Vol 8 (1) ◽  
Author(s):  
Xiaohui He ◽  
Yiwang Chen ◽  
Yongming Liu ◽  
Muqing Chen ◽  
Shuxian Yu ◽  
...  

AbstractThe polymerizations of n-butyl methylacrylate (nBMA) were carried out using bis(β-ketoamino)nickel(II) complexes (Ni[CH3C(O)CHC(NR)CH3]2: R = phenyl, 1; R = naphthyl, 2) in combination with methylaluminoxane (MAO) in toluene. The effect of parameters such as polymerization temperature, Al/Ni molar ratios, polymerization time, and monomer concentration, on catalytic polymerization activity and polymer molecular weights, were examined in detail. Both of the nickel(II) catalytic systems exhibited moderate activity, and produced P(nBMA) with high molecular weight and relatively broad molecular weight distribution (Mw/Mn=2.0~3.0. The obtained polymer has been characterized by means of FTIR, 1H NMR, 13C NMR, DSC, and WAXD technique and was confirmed to be syndio-rich stereospecific P(nBMA).


2007 ◽  
Vol 40 (5) ◽  
pp. 1429-1434 ◽  
Author(s):  
Hideyuki Otsuka ◽  
Koichiro Aotani ◽  
Yuji Higaki ◽  
Yoshifumi Amamoto ◽  
Atsushi Takahara

1970 ◽  
Vol 43 (2) ◽  
pp. 333-355 ◽  
Author(s):  
R. G. Newberg ◽  
H. Greenberg ◽  
T. Sato

Abstract Molecular weight control for alfin catalyzed 1,3-diene polymers by 1,4-diene straight chain or cyclic hydrocarbons (and their derivatives) has been demonstrated. The microstructure of these moderated polymers is identical to the polymers obtained without molecular weight control. From the wide series of copolymers preparable with this improved polymerization method four were chosen for their evaluation after laboratory testing for processability, physicals, and economics. Copolymers of butadiene—isoprene (90/10 and 97/3) and butadiene—styrene (85/15 and 95/5) virgin or oil extended have been shown to be economically attractive and to give superior wear, traction, and adequate heat build up.


2004 ◽  
Vol 37 (24) ◽  
pp. 8941-8950 ◽  
Author(s):  
David B. Thomas ◽  
Anthony J. Convertine ◽  
Leslie J. Myrick ◽  
Charles W. Scales ◽  
Adam E. Smith ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Ahmed Aouissi ◽  
Zeid Abdullah Al-Othman ◽  
Abdurrahman Salhabi

Polymerization of 1,2-cyclohexene oxide (CHO) in dichloromethane was catalyzed by 12-tungstophosphoric acid (H3PW12O40·13H2O) as a super solid acid. The effect of polymerization parameters such as reaction time, temperature, and catalyst amount was investigated. The effect of acetic anhydride as a ring-opening agent was also investigated. The resulting poly(1,2-cyclohexene oxide) (PCHO) was characterized by Fourier transform infrared (FTIR), nuclear magnetic resonance spectroscopy (1HNMR), gel-permeation chromatography (GPC), and differential scanning calorimetry (DSC). It has been found that the PCHO prepared over H3PW12O40·13H2O has a stereoregularity higher than that prepared over clay and Aluminium alkoxide catalysts. TheTgvalue obtained is due to the microstructure but not to molecular weight. The yield and the molecular weight of the polymer depend strongly on the reaction conditions. Molecular weights can be readily controlled by changing reaction temperature, reaction time, and catalyst amount. Contrary to most polymerization reactions, the molecular weight increases with the temperature increase. Addition of acetic anhydride to the reaction medium increased the yield threefold.


Sign in / Sign up

Export Citation Format

Share Document