Evaluation of watershed management interventions on biomass carbon sequestration and stakeholders’ perception about watershed condition improvement (case study: Dehchenashk sub-watershed, Chehl Chai watershed)

2021 ◽  
Vol 19 (3) ◽  
pp. 217-236
Author(s):  
Zeinab Karimi ◽  
Vahedberdi Sheikh ◽  
Amir Sadoddin ◽  
Naghmeh Mobarghaee Dinan
1970 ◽  
Vol 3 ◽  
pp. 20-29
Author(s):  
Bishnu P Shrestha

This study was carried out to quantify total carbon sequestration in two broad leaved forests (Shorea and Schima-Castanopsis forests) of Palpa district. The inventory for estimating above and below ground biomass of forest was carried out using stratified random sampling. Biomass was calculated using allometric models. Soil samples were taken from soil profile upto 1 m depth for deep soil and up to bed rock for shallow soils at the interval of 20 cm. Walkey and Black method were applied for measuring soil organic carbon. Total biomass carbon in Shorea and Schima-Castanopsis forest was found 101.66 and 44.43 t ha-1 respectively. Soil carbon sequestration in Schima-Castanopsis and Shorea forest was found 130.76 and 126.07 t ha-1 respectively. Total carbon sequestration in Shorea forest was found 1.29 times higher than Schima-Castanopsis forest. The study found that forest types play an important role on total carbon sequestration. Key Words: Carbon sequestration, Shorea forest, Schima-Castanopsis forest, Biomass carbon, Soil carbon DOI: 10.3126/init.v3i0.2424 The Initiation Vol.3 2009 p.20-29


Author(s):  
Seiichi Kagaya ◽  
Tetsuya Wada

AbstractIn recent years, it has become popular for some of countries and regions to adapt the system of governance to varied and complex issues concerned with regional development and the environment. Watershed management is possibly the best example of this. It involves flood control, water use management and river environment simultaneously. Therefore, comprehensive watershed-based management should be aimed at balancing those aims. The objectives of this study are to introduce the notion of environmental governance into the planning process, to establish a method for assessing the alternatives and to develop a procedure for determining the most appropriate plan for environmental governance. The planning process here is based on strategic environment assessment (SEA). To verify the hypothetical approach, the middle river basin in the Tokachi River, Japan was selected as a case study. In practice, after workshop discussions, it was found to have the appropriate degree of consensus based on the balance of flood control and environmental protection in the watershed.


2021 ◽  
Vol 57 ◽  
pp. 126939
Author(s):  
Mari Ariluoma ◽  
Juudit Ottelin ◽  
Ranja Hautamäki ◽  
Eeva-Maria Tuhkanen ◽  
Miia Mänttäri

Author(s):  
Athanase R. Cyamweshi ◽  
Shem Kuyah ◽  
Athanase Mukuralinda ◽  
Catherine W. Muthuri

AbstractAlnus acuminata Kunth. (alnus) is widely used in agroforestry systems across the globe and is believed to provide multiple ecosystem services; however, evidence is lacking in agroforestry literature to support the perceived benefits, particularly in Rwanda. To understand carbon sequestration potential and other benefits of alnus, a household survey, tree inventory and destructive sampling were conducted in north-western Rwanda. Over 75% of the respondents had alnus trees in their farms. The trees provide stakes for climbing beans, firewood and timber. They also improve soil fertility and control soil erosion. Farmers had between 130 and 161 alnus trees per hectare with an average height of 7.7 ± 0.59 m and diameter at breast height of 16.3 ± 1.39 cm. The largest biomass proportion was found in stems (70.5%) while branches and leaves stock about 16.5 and 13% of the total biomass, respectively. At farm level, aboveground biomass of alnus trees was estimated to be 27.2 ± 0.7 Mg ha−1 representing 13.6 Mg of carbon (C) per hectare. Biomass carbon increased with tree size, from 7.1 ± 0.2 Mg C ha−1 in 3 years old trees to 34.4 ± 2.2 Mg C ha−1 in 10 years old trees. The converse was observed with elevation; biomass carbon decreased with increasing elevation from 21.4 ± 1.29 Mg C ha−1 at low (2011–2110 m) to 9.6 ± 0.75 Mg C ha−1 in the high elevation (> 2510 m). In conclusion, alnus agroforestry significantly contributes to carbon sequestration, although the magnitude of these benefits varies with tree age and elevation. Planting alnus trees on farms can meet local needs for stakes for climbing beans, wood and soil fertility improvement, as well as the global need for regulation of climate change.


The Holocene ◽  
2016 ◽  
Vol 27 (5) ◽  
pp. 651-664 ◽  
Author(s):  
Krystyna Milecka ◽  
Grzegorz Kowalewski ◽  
Barbara Fiałkiewicz-Kozieł ◽  
Mariusz Gałka ◽  
Mariusz Lamentowicz ◽  
...  

Wetlands are very vulnerable ecosystems and sensitive to changes in the ground water table. For the last few thousand years, hydrological balance has also been influenced by human activity. To improve their cropping features, drainage activity and fertilizing were applied. The drainage process led to an abrupt change of environment, the replacement of plant communities and the entire ecosystem. The problem of carbon sequestration is very important nowadays. A higher accumulation rate is related to higher carbon accumulation, but the intensity of carbon sequestration depends on the type of mire, habitat, and climatic zone. The main aim of this article was an examination of the changes in poor-fen ecosystem during the last 200 years in relation to natural and anthropogenic factors, using paleoecological methods (pollen and macrofossils). The second aim was a detailed investigation of the sedimentary record to aid our understanding of carbon sequestration in the poor fen of temperate zone. This case study shows that fens in temperate zones, in comparison with boreal ones, show higher carbon accumulation rates which have been especially intensive over the last few decades. To reconstruct vegetation changes, detailed palynological and macrofossil analyses were done. A 200-year history of the mire revealed that it was influenced by human activity to much degree. However, despite the nearby settlement and building of the drainage ditch, the precious species and plant communities still occur.


2012 ◽  
Vol 12 ◽  
pp. 127-132
Author(s):  
Bhanu B Panthi

This research attempts to identify the existing condition of the community managed forest based on the assumption that it will serve as a proxy for the condition of other forests in the mid hills region of Nepal. The research area has an atypical variation in altitude and diverse pattern of vegetation. This study mainly focuses on estimating carbon content in the forest and identifying the species that has more carbon storage capacity. The research signifies the role of forests in mitigation of ‘Global warming’ and ‘Climate change’ by storing carbon in tree biomass. These types of community based forest management programs are significant for their additional carbon sequestration through the avoidance of deforestation and degradation. The carbon sequestration have a significant contribution to environmental benefits, any shrinkage of forests have an enormous impact on CO2 emission with long term consequences. Thus, the development and expansion of community managed forests provide many benefits to the adjacent community and globally at large.DOI: http://dx.doi.org/10.3126/njst.v12i0.6490 Nepal Journal of Science and Technology 12 (2011) 127-32 


Sign in / Sign up

Export Citation Format

Share Document