Transformation and Spread of Tuanjie-Kronynovka Culture of the Tumen River Basin

2020 ◽  
Vol 118 ◽  
pp. 185-216
Author(s):  
Eunshik Yoo
Keyword(s):  
2018 ◽  
Vol 28 (6) ◽  
pp. 973-985 ◽  
Author(s):  
Hengxing Xiang ◽  
Mingming Jia ◽  
Zongming Wang ◽  
Lin Li ◽  
Dehua Mao ◽  
...  

2019 ◽  
Vol 11 (6) ◽  
pp. 1559 ◽  
Author(s):  
Xiaojun Zheng ◽  
Jing Fu ◽  
Noelikanto Ramamonjisoa ◽  
Weihong Zhu ◽  
Chunguang He ◽  
...  

Understanding what controls wetland vegetation community composition is vital to conservation and biodiversity management. This study investigates the factors that affect wetland plant communities and distribution in the Tumen River Basin, Northeast China, an internationally important wetland for biodiversity conservation. We recorded floristic composition of herbaceous plants, soil properties, and microclimatic variables in 177, 1 × 1 m2 quadrats at 45 sites, located upstream (26), midstream (12), and downstream (7) of the Basin. We used TWINSPAN to define vegetation communities and canonical correspondence analysis (CCA) to examine the relationships between environmental and biological factors within the wetland plant communities. We recorded 100 plant species from 93 genera and 40 families in the upstream, 100 plant species from 57 genera and 31 families in the midstream, and 85 plant species from 76 genera and 38 families in the downstream. Higher species richness was recorded upstream of the River Basin. The plant communities and distribution were influenced by elevation, soil properties (total potassium, pH, and available phosphorus), and microclimate variables (surface temperature, precipitation, average temperature, sunshine hours, and relative humidity). More than any other factor, according to our results, elevation strongly influenced the structure of wetland plant communities. These findings support prevailing models describing the distribution of wetland plants along environmental gradients. The determination of the relationship between soil and plants is a useful way to better understand the ecosystem condition and can help manage the wetland ecosystem.


2002 ◽  
Vol 12 (3) ◽  
pp. 273-281 ◽  
Author(s):  
Shi-jun Wang ◽  
Dan Wang ◽  
Xiang-hua Yang

2021 ◽  
Vol 13 (17) ◽  
pp. 3498
Author(s):  
Yuyan Liu ◽  
Ri Jin ◽  
Weihong Zhu

Wetlands play an important role in the terrestrial ecosystem. However, agricultural activities have resulted in a significant decrease in natural wetlands around the world. In the Tumen River Basin (TRB), a border area between China, the Democratic People’s Republic of Korea (DPRK), and Russia, natural wetlands have been reclaimed and converted into farmland, primarily due to the migration practices of Korean-Chinese. To understand the spatial and temporal patterns of this conversion from wetlands to farmland, Landsat remote sensing images from four time periods were analyzed. Almost 30 years of data were extracted using the object-oriented classification method combined with random forest classification. In addition, statistical analysis was conducted on the conversion from natural wetland to farmland and from farmland to wetland, as well as on the relationship between the driving factors. The results revealed that a loss of 49.2% (12,540.1 ha) of natural wetlands in the Chinese portion of the TRB was due to agricultural encroachment for grain production. At the sub-basin scale, the largest area of natural wetland converted into farmland in the past 30 years was in the Hunchun River Basin (HCH), which accounts for 22.0% (2761.2 ha) of the total. Meanwhile, 6571.4 ha of natural wetlands, mainly in the Gaya River Basin (GYH), have been restored from farmland. These changes are closely related to the migration of the agricultural populations.


Sign in / Sign up

Export Citation Format

Share Document