Molecular Imprinted Graphene Oxide Nanocomposite for Optical Sensing of Nicotine in Human Blood Plasma

2020 ◽  
Vol 42 (6) ◽  
pp. 856-856
Author(s):  
Sehrish Qazi Sehrish Qazi ◽  
Huma Shaikh Huma Shaikh ◽  
Ayaz Ali Memon Ayaz Ali Memon ◽  
and Shahabuddin Memon and Shahabuddin Memon

Among all psychotropic alkaloids, nicotine is more addictive, carcinogenic and capable of causing many health problems. This work is based on the development of highly robust, cheap, reliable, selective and sensitive nicotine imprinted graphene oxide nanocomposite (ImpGO nanocomposite) based optical sensor for determination of nicotine in human plasma. The ImpGO nanocomposite has been thoroughly characterized using different techniques i.e. FT-IR, SEM, TEM, Raman, etc. These characterizations revealed that ImpGO nanocomposite is comprised of single layer of graphene oxide successfully modified with imprinted polymer. The synthesized material was utilized to selectively determine nicotine using UV-vis spectrophotometer in BR buffer of 0.1 M at pH 3 and diluted human plasma. The effect of parameters such as buffer concentration, pH, amount of nanocomposite, etc on determination of nicotine using ImpGO nanocomposite were studied thoroughly. Thus, a sensitive optical method was developed for determination of nicotine in human plasma with linear range of 22-370 pM along with LOD and LOQ of 7 pM and 22 pM, respectively. The selectivity of sensor was evaluated using homologues of nicotine such as nicotine amide, caffeine and cotinine. The results obtained from biological samples showed that developed optical sensor is efficient in complex matrices of real sample.

1996 ◽  
Vol 40 (4) ◽  
pp. 175-181 ◽  
Author(s):  
Toshiko Ueda ◽  
Tsuyoshi Maekawa ◽  
Daikai Sadamitsu ◽  
Ryosuke Tsuruta ◽  
Kazuyuki Nakamura

2017 ◽  
Vol 0 (1 (5)) ◽  
pp. 22-32 ◽  
Author(s):  
Igor Kuznetsov ◽  
Helen Naumenko ◽  
Nataliia Reznichenko ◽  
Andrey Kostiuk ◽  
Roman Savyak ◽  
...  

2019 ◽  
Vol 19 (1) ◽  
pp. 97
Author(s):  
Teguh Wirawan ◽  
Ganden Supriyanto ◽  
Agoes Soegianto

A novel ion Imprinted polymer (IIP) material with 8-hydroxyquinoline (8HQ) (the complexing ligands), methacrylic acid (MAA) (the monomers), ethylene glycol dimethacrylate (EGDMA) (the crosslinker agent), benzoyl peroxide (the initiator), and ethanol-acetonitrile (2:1) (the porogen) as adsorbent for the determination of cadmium by solid phase extraction–flame atomic absorption spectrometry (SPE-FAAS) has been synthesized. Synthesis of IIP was done by precipitation polymerization method. The imprinted Cd(II) ions were removed by leaching method using 1 mol L-1 nitric acid. The IIP was characterized by fourier transform infra-red (FT-IR) spectroscopy and scanning electron microscopy (SEM) to ensure successful synthesis of IIP. The experimental parameters for SPE extraction, such as pH of the sample, loading rate, and elution rate, have been optimized. The optimum pH for quantitative Cd(II) retention was 6, and the elution was completed with 2 mL of 1.0 mol L-1 nitric acid. The optimum loading rate was 0.5 mL min-1. Under optimum conditions, the proposed method with theoretical enrichment factor 50 times has a detection limit of 0.5 µg L-1 and the recovery of 97.75%.


Sign in / Sign up

Export Citation Format

Share Document