Electrocatalytic Hydrogenation of CO2 to Hydrocarbons on Gold Catalyst in the Presence of Ionic Liquid

2021 ◽  
Vol 43 (6) ◽  
pp. 665-665
Author(s):  
Arshid M Ali Arshid M Ali ◽  
Aqeel Taimoor Aqeel Taimoor ◽  
Ayyaz Muhammad Ayyaz Muhammad ◽  
Muhammad A Daous and Usman Saeed Muhammad A Daous and Usman Saeed

This study is aimed to investigate the electro-catalytic activity of Au supported on both CeO2 and activated carbon (AC) to convert CO2 to mixture of C1-C4 hydrocarbons in the presence of ionic liquid (IL) 1-butyl-3-methylimidazolium methylsulfonate. The studied catalyst samples were prepared by using simultaneous wet impregnation method. The sample containing 0.6 % Au showed higher electro-catalytic activity than the sample contained 0.3 % Au. Both, the average Au particles size and the transformation of layered non-uniformed semi-oval structure to flaked tiny circular like-structure were mainly responsible for the higher catalytic activity of 0.6Au-CeO2-AC sample. In addition, the overall electro-catalytic activity depends upon the applied reaction voltage. Overall, the presence of IL, the surface morphology, and average Au particles size had played a key role in the electro-catalytic conversion of CO2 to hydrocarbons.

RSC Advances ◽  
2019 ◽  
Vol 9 (38) ◽  
pp. 21804-21809 ◽  
Author(s):  
WanXin Yang ◽  
Guoqing Guo ◽  
Zhihong Mei ◽  
Yinghao Yu

ILs@MIL-100 composites were synthesized via the wet impregnation method and applied in deep oxidative desulfurization of gasoline with high efficiency.


2021 ◽  
Author(s):  
Samahe Sadjadi ◽  
Neda Abedian-Dehaghani ◽  
Majid M. Heravi

Abstract In this work, an ionic liquid-containing thermo-responsive heterogeneous catalyst with utility for promoting hydrogenation of nitro-compounds in aqueous media is developed. To prepare the catalyst, silica-coated carbon nanotubes were synthesized and vinyl-functionalized. The resulted compound was then polymerized with 1-viny-3-butylimidazolium bromide and N-isopropylacrylamide. The obtained ionic liquid-containing thermo-responsive composite was palladated via wet-impregnation method to give the final catalyst. Study of the performance of the catalyst confirmed high catalytic activity of the catalyst at temperature above the lower critical solution temperature. Furthermore, the catalyst was highly recyclable and showed negligible Pd leaching upon recycling. Broad substrate scope and selectivity of the catalyst towards reduction of nitro functionality were also confirmed. Furthermore, hot filtration test implied the heterogeneous nature of the catalysis. The comparison of the activity of Pd/CNT-P with some control catalysts approved the importance of hybridization of P and CNT and the presence of ionic liquid for the catalytic activity.


2011 ◽  
Vol 71-78 ◽  
pp. 2806-2813
Author(s):  
Jiang Jun Hu ◽  
Qian Ma ◽  
Ling Ouyang ◽  
Xi Chen ◽  
Fu Xing Gan

The selective catalytic reduction of nitric oxide by ethylene was studied over Cu/ZSM-5 catalyst in the temperature range of 200-550°C, in which NO cannot be reduced by ethylene without Cu/ZSM-5 catalyst. Prepared Cu/ZSM-5 catalyst in varies loading as Na/ZSM-5 by the wet impregnation method, and the effect of the catalytic activity was studied in varies fitting temperatures. Several influencing factors, such as the different reaction temperatures, oxygen gas concentration, and Cu2+ concentration were investigated. Cu-Ce-ZSM-5 catalyst was prepared by wet impregnation method and the metallic influence of CeO2 to the catalytic ability was studied.


2015 ◽  
Vol 1089 ◽  
pp. 133-136 ◽  
Author(s):  
Zhi Dan Fu ◽  
Qing Ye ◽  
Shui Yuan Cheng ◽  
Dao Wang

The manganese oxide (MnO2) sample was synthesized by the reaction of KMnO4 with Mn (Ac)2 using the HNO3 solution as pH regulator. The Ag-doped manganese oxide, Ag/MnO2-Q and Ag/MnO2-H, were synthesized by incorporation method and typical wet impregnation method, respectively. The structure of catalysts was characterized by N2 adsorption/desorption and X-ray diffraction. The influences of preparation methods on the catalytic activity of CO oxidation were studied. The doping of Ag to MnO2 decreased the specific surface area of Ag/MnO2 catalysts, especially for Ag/MnO2-H samples prepared by traditional wet-impregnation method. The Ag/MnO2 catalysts showed higher catalytic activity for CO oxidation than that of MnO2. The catalytic activities of Ag/MnO2 samples strongly depended upon the preparing methods, among which 3Ag/MnO2-Q catalyst, prepared by the incorporation method, was the most efficient catalyst towards the addressed reactions. The excellent performance of 3Ag/MnO2-Q was mainly associated with the good low-temperature reducibility, abundant surface oxygen and broadly dispersed silver oxides species.


RSC Advances ◽  
2016 ◽  
Vol 6 (9) ◽  
pp. 6921-6931 ◽  
Author(s):  
Shengfeng Lou ◽  
Lihua Jia ◽  
Xiangfeng Guo ◽  
Wenwang Wu ◽  
Lianbing Gao ◽  
...  

NaAlO2modified with KF (KF/NaAlO2) was prepared using a simple wet-impregnation method and used for the transesterification of ethylene glycol monomethyl ether and methyl laurate. The catalyst showed excellent catalytic activity and good stability.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Yuniawan Hidayat ◽  
Khoirina Dwi Nugrahaningtyas ◽  
Priska Julia Hendrastuti

The amount of loaded Co-Mo metal on the Y-Zeolite Ultra Stable (USY) was increased by the addition of activated carbon in the pre-impregnation process. USY modification was done by adding activated carbon to USY as much as 10 wt%. The process of adding activated carbon is carried out by three methods, i.e., grinding with sucrose binder (ACU1), without sucrose (ACU2), and conducting by ball milling (ACU3). Wet impregnation method was employed to disperse the Co and Mo, sequentially. Composites were characterized using Fourier Transform Infrared (FTIR), X-ray diffraction (XRD), and surface area analyzer (SAA). Metal dispersions were observed by X-ray fluorescence (XRF). The FTIR suggests an interaction between USY and activated car-bon, while the XRD result indicated the none structural transformation of USY zeolite. The SAA analysis showed an increased total pore radius with the activated carbon addition. The XRF confirmed the increasing of total metals dispersion of 6.25% (ACU1); 5.48%(ACU2); 5.18% (ACU3); compare to USY origin with 3.28% metals loaded.


2003 ◽  
Vol 21 (5) ◽  
pp. 425-438 ◽  
Author(s):  
M. Mokhtar

A CuO/Al2O3 solid containing 0.2 mol% CuO (0.2CuO/Al2O3) and three MoO3-doped variants of this material were all prepared via the wet impregnation method, the amount of dopant added to the CuO/Al2O3 solid being 0.25, 1.0 or 2.0 mol% MoO3, respectively. All the samples prepared were heated in air to 350, 450 or 600°C, respectively, before being cooled to room temperature and stored. X-Ray studies of these materials showed that the undoped (pure) solid calcined at 350°C exhibited all the diffractions lines associated with the AlO(OH) and CuO phases with an excellent degree of crystallinity. Doping the pure solid resulted in the effective progressive decrease in the degree of crystallinity of both the above-mentioned phases to an extent proportional to the amount of dopant added. Increasing the calcination temperature of the pure and doped solids to 650°C led to a significant decrease in the degree of ordering of CuO due to the formation of poorly crystalline γ-Al2O3 having a much better dispersion power relative to AlO(OH). The specific surface areas of the various samples were found to decrease progressively as the amount of dopant added was increased, especially for samples calcined at 650°C. Increasing the calcination temperature of the pure sample within the range 350–650°C led to a small increase in their catalytic activities in H2O2 decomposition. In contrast, MoO3 treatment followed by calcination of the resulting materials in the range 350–650°C resulted in a significant increase in their catalytic activities in the same catalytic reaction. The maximum increase in the catalytic activity at 30°C attained values of 720%, 735% and 976% for the doped solids calcined at 350, 450 and 650°C, respectively. In contrast, however, such doping brought about a progressive measurable decrease in the catalytic activity of the treated solids towards CO oxidation by O2 when this latter reaction was conducted over the temperature range 150–250°C.


Catalysts ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 574 ◽  
Author(s):  
Diego Felipe Hernández-Barreto ◽  
Jenny Paola Rodriguez-Estupiñán ◽  
Juan Carlos Moreno-Piraján ◽  
Rocío Sierra Ramírez ◽  
Liliana Giraldo

The aim of this study was to evaluate and compare the adsorption and photocatalytic activity of activated carbon-based photocatalysts. Titanium dioxide (TiO2) and zinc oxide (ZnO) were chosen as semiconductors to prepare composites with activated carbon by the wet impregnation method. Activated carbon was prepared using as starting material onion leaves (Allium fistulosum) and as activating agent phosphoric acid (H3PO4). Photooxidation and batch adsorption of phenol was studied to compare the efficiency of the materials prepared. The results showed that the composite AC–TiO2 has a greater photocatalytic activity and a better adsorption capacity compared to AC–ZnO composite.


Cerâmica ◽  
2018 ◽  
Vol 64 (371) ◽  
pp. 436-442 ◽  
Author(s):  
E. O. Moraes Júnior ◽  
J. O. Leite ◽  
A. G. Santos ◽  
M. J. B. Souza ◽  
A. M. Garrido Pedrosa

Abstract La1-xSrxNiO3 (x= 0.0, 0.3 or 0.7) perovskite-type oxides were synthesized using the modified proteic gel method and using collagen as an organic precursor. Catalysts of La1-xSrxNiO3/Al2O3 were obtained using the wet impregnation method. The synthesized catalysts were characterized by X-ray diffraction, surface area and temperature-programmed reduction. The catalysts were evaluated in the partial oxidation reaction of methane, and the levels of selectivity to CO, CO2, H2 and H2O were determined. Among the catalysts studied, the catalyst LaNiO3/Al2O3 had the highest methane conversion level (78%) and higher H2 selectivity (55%).


2021 ◽  
Author(s):  
Nawel Jr ◽  
Thabet Makhlouf ◽  
Gerard Delahay ◽  
Hassib Tounsi

Abstract Copper loaded η-alumina catalysts with different copper contents have been prepared by impregnation/evaporation method. The catalysts were characterized by XRD, FTIR, BET, UV–vis, H2-TPR and evaluated in the selective catalytic reduction of NO by NH3 and in the selective catalytic oxidation of NH3. The characterization techniques showed that the impregnation/evaporation method permits to obtain highly dispersed copper oxide species on the η-alumina surface when low amount of copper is used (1wt. % and 2 wt.%). The wet impregnation method made it possible to reach a well dispersion of the copper species on the surface of the alumina for the low copper contents Cu(1)-Al2O3 and Cu(2)-Al2O3. The latter justifies the similar behavior of Cu(1)-Al2O3) and Cu(2)-Al2O3 in the selective catalytic oxidation of NH3 where these catalysts exhibit a conversion of NH3 to N2 of the order of 100% at T > 500°C.


Sign in / Sign up

Export Citation Format

Share Document