activating agent
Recently Published Documents


TOTAL DOCUMENTS

269
(FIVE YEARS 84)

H-INDEX

27
(FIVE YEARS 6)

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 517
Author(s):  
Bin Lu ◽  
Wen-Jing Xiao ◽  
Jia-Rong Chen

Visible-light photoredox catalysis has attracted tremendous interest within the synthetic community. As such, the activation mode potentially provides a more sustainable and efficient platform for the activation of organic molecules, enabling the invention of many controlled radical-involved reactions under mild conditions. In this context, amide synthesis via the strategy of photoredox catalysis has received growing interest due to the ubiquitous presence of this structural motif in numerous natural products, pharmaceuticals and functionalized materials. Employing this strategy, a wide variety of amides can be prepared effectively from halides, arenes and even alkanes under irradiation of visible light. These methods provide a robust alternative to well-established strategies for amide synthesis that involve condensation between a carboxylic acid and amine mediated by a stoichiometric activating agent. In this review, the representative progresses made on the synthesis of amides through visible light-mediated radical reactions are summarized.


2022 ◽  
Vol 11 (2) ◽  
pp. 403-412
Author(s):  
Heri Rustamaji ◽  
Tirto Prakoso ◽  
Jenny Rizkiana ◽  
Hary Devianto ◽  
Pramujo Widiatmoko ◽  
...  

The purpose of this study is to alter the biomass of Sargassum sp. into elective fills and high valuable biomaterials in a hydrothermal process at 200oC for 90 minutes, using ZnCl2 and CaCl2 activating agents, withChClas a catalyst. This method generatedthree primaryoutputs: hydrochar, bio-oil, and gasproducts. ChCl to water ratio varies from 1:3, 1:1, and 3:1. The hydrochar yield improved when the catalyst ratio was increased, but the bio-oil and gas yield declined. The highest hydrochar yields were 76.95, 63.25, and 44.16 percent in ZnCl2, CaCl2, and no activating agent samples, respectively.The porosity analysis observed mesopore structures with the most pore diameters between 3.9-5.2 nm with a surface area between44.71-55.2. The attribute of interaction between activator and catalyst plays a role in pore formation. The hydrochar products with CaCl2 showed the best thermal stability. From the whole experiment, the optimum hydrochar yield (76.95%), optimum surface area (55.42 m2 g-1), and the increase in carbon content from 21.11 to 37.8% were achieved at the ratio of ChCl to water was three, and the activating agent of ZnCl2. The predominant bio-oil components were hexadecane, hexadecanoic, and 9-octadecenoic acids, with a composition of 51.65, 21.44, and 9.87%, respectively the remaining contained aromatic alkanes and other fatty acids. The findings of this study reported that adding activating agents and catalysts improve hydrochar yield and characteristics of hydrochar and bio-oil products, suggesting the potential of hydrochar as a solid fuel or biomaterial and bio-oil as liquid biofuel


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2033
Author(s):  
Yuanbo Wang ◽  
Chaoqun Nie ◽  
Bo Li ◽  
Yonggang Wei

This study focused on the preparation of high-grade ferronickel concentrate, the behavior of efficient migration and the polymerization of ferronickel particles during reduction roasting, by adding calcium fluoride and a ferronickel concentrate to low-grade laterite ore from Yunnan. The effects of temperature, holding time, reductant content, ferronickel concentrate content and magnetic field intensity on the preparation of the ferronickel concentrate were studied and the optimum conditions were determined as follows: 30% ferronickel concentrate (metal Ni-4.68%, metal Fe-45.0%), 8% coal, 7% calcium fluoride, reduction temperature of 1250 °C, reduction time of 60 min and the intensity of magnetic separation is 150 mT. The proportion of nickel and iron in ferronickel concentrate was 88.7% (metal Ni-8.62%, metal Fe-80.1%), and the recovery efficiency of nickel and iron are 98.8% and 82.4%, respectively. X-ray diffraction and scanning electron microscopy indicated that ferronickel-concentrate, as an activating agent, improved the aggregation effect of ferronickel particles. The efficient migration and polymerization of ferronickel particles in the ore significantly increased the size of the ferronickel particles with additives, therefore a high-grade ferronickel concentrate was prepared, and the reduction and recovery efficiency of laterite nickel ore was improved.


2021 ◽  
Vol 11 (24) ◽  
pp. 11640
Author(s):  
Octolia Togibasa ◽  
Mumfaijah Mumfaijah ◽  
Yanti Kiding Allo ◽  
Khaeriah Dahlan ◽  
Yane Oktovina Ansanay

The effect of chemical activators on the properties of activated carbon from sago waste was conducted in this study by using ZnCl2, H3PO4, KOH, and KMnO4 chemical solutions. The carbonized sago waste was added to each chemical solution, boiled at 85 °C for 4 h, and heated at 600 °C for 3 h. The porosity, microstructural, proximate, and surface chemistry analyses were carried out using nitrogen adsorption with employing the Brunauer Emmett Teller (BET) method and the Barret-Joyner-Halenda (BJH) calculation, scanning electron microscopy by using energy dispersive spectroscopy, X-ray diffractometer, simultaneous thermogravimetric analysis system, and the Fourier-transform infrared spectroscopy. The results showed that the activated carbon prepared using ZnCl2 acid had the highest specific surface area of 546.61 m2/g, while the KOH activating agent surpassed other chemicals in terms of a refined structure and morphology, with the lowest ash content of 10.90%. The surface chemistry study revealed that ZnCl2 and KOH activated carbon showed phenol and carboxylate groups. Hence, ZnCl2 acid was suggested as activating agents for micropore carbon, while KOH was favorable to producing a mesopore-activated carbon from sago waste.


2021 ◽  
pp. 101696
Author(s):  
Emmanuel Oluwaseyi Fagbohun ◽  
Qianyu Wang ◽  
Lucas Spessato ◽  
Yuhua Zheng ◽  
Wenli Li ◽  
...  

2021 ◽  
Vol 9 (2) ◽  
pp. 123-126
Author(s):  
Shravani Sunil Sontakke ◽  
Anushka Shailesh Rupwate ◽  
Mohini Baile ◽  
Ashish Jain

The given research study explains about the removal of methyl red dye from aqueous solution. Using activated carbon prepared from kitchen waste. Garlic husk which was used in this work is cost effective and easily available kitchen waste for the production of activated carbon. HCl solution was used as activating agent. Various characterization procedures such as FT-IR, XRD, moisture content, ash value, volatile matter content, pH, iodine value of prepared activated carbon was studied. The adsorption property of activated carbon using different measurement studies like contact time study, effect of concentration, effect of dose of adsorbent was also studied.


Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5593
Author(s):  
Ke-Xin Li ◽  
Xun Sun ◽  
Bai-Yan Li ◽  
Hiroki Yokota

Osteoclasts are a driver of a vicious bone-destructive cycle with breast cancer cells. Here, we examined whether this vicious cycle can be altered into a beneficial one by activating Wnt signaling with its activating agent, BML284. The conditioned medium, derived from Wnt-activated RAW264.7 pre-osteoclast cells (BM CM), reduced the proliferation, migration, and invasion of EO771 mammary tumor cells. The same inhibitory effect was obtained with BML284-treated primary human macrophages. In a mouse model, BM CM reduced the progression of mammary tumors and tumor-induced osteolysis and suppressed the tumor invasion to the lung. It also inhibited the differentiation of RANKL-stimulated osteoclasts and enhanced osteoblast differentiation. BM CM was enriched with atypical tumor-suppressing proteins such as Hsp90ab1 and enolase 1 (Eno1). Immunoprecipitation revealed that extracellular Hsp90ab1 interacted with latent TGFβ (LAP-TGFβ) as an inhibitor of TGFβ activation, while Hsp90ab1 and Eno1 interacted and suppressed tumor progression via CD44, a cell-adhesion receptor and a cancer stem cell marker. This study demonstrated that osteoclast-derived CM can be converted into a bone-protective, tumor-suppressing agent by activating Wnt signaling. The results shed a novel insight on the unexplored function of osteoclasts as a potential bone protector that may develop an unconventional strategy to combat bone metastasis.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1672
Author(s):  
Sabrina Sciabica ◽  
Giovanni Tafuro ◽  
Alessandra Semenzato ◽  
Daniela Traini ◽  
Dina M. Silva ◽  
...  

Hyaluronic acid (HA), an excellent biomaterial with unique bio properties, is currently one of the most interesting polymers for many biomedical and cosmetic applications. However, several of its potential benefits are limited as it is rapidly degraded by hyaluronidase enzymes. To improve the half-life and consequently increase performance, native HA has been modified through cross-linking reactions with a natural and biocompatible amino acid, Ornithine, to overcome the potential toxicity commonly associated with traditional linkers. 2-chloro-dimethoxy-1,3,5-triazine/4-methylmorpholine (CDMT/NMM) was used as an activating agent. The new product (HA–Orn) was extensively characterized to confirm the chemical modification, and rheological analysis showed a gel-like profile. In vitro degradation experiments showed an improved resistance profile against enzymatic digestions. Furthermore, in vitro cytotoxicity studies were performed on lung cell lines (Calu-3 and H441), which showed no cytotoxicity.


2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Enebi Estella Jasper ◽  
Jude Chinedu Onwuka ◽  
Yakubu Manasseh Bidam

Abstract Background The use of active carbons derived from waste biomass as adsorbents in the remediation of wastewater remains a valuable and cost-effective technology when compared to the use of commercial active carbon for the same purpose. This research aims at using a 2-level full factorial design (FFD) to efficiently evaluate factors that influence the preparation of active carbon from the waste pods of the Dialium guineense seeds. The influence of three preparation factors (concentration of the activating agent, activation time, and type of activating agent) on the active carbon yield and its adsorption capacity for methylene blue were investigated. Based on the full factorial design, two regression models were developed to correlate the factors to the two responses. From an analysis of variance (ANOVA), the most significant factors influencing each response were identified. The active carbon preparation conditions were then optimized by maximizing both the active carbon yield and its adsorption capacity for Methylene Blue. The functional group and surface morphology of the active carbon prepared under the predicted optimum conditions was analyzed via Fourier Transform Infra-Red (FTIR) spectroscopy and Scanning Electron Microscopy (SEM) respectively. Results The results of this study revealed that the concentration of the activating agent had the most significant effect on the yield of the active carbon produced as well as on its adsorption capacity for methylene blue. The optimum preparation process conditions were found to be: concentration of activating agent 5M, activation time 30 min and activating agent, NaOH which resulted in an active carbon yield of 21.25%, and an adsorption capacity of 9.33509 mg MB per gram of active carbon. SEM and FTIR showed evidence of successful activation. Conclusion The preparation of Dialium guineense seed pods' active carbon is strongly influenced by concentration and type of activating agent used. Reliable statistical models based on the FFD proved to be useful in identifying factors that significantly influence the preparation of Dialium guineense seed pods' active carbon. The active carbon holds great potential for application in the elimination of hazardous synthetic dyes from wastewater and should be explored further.


2021 ◽  
Vol 2049 (1) ◽  
pp. 012025
Author(s):  
Awitdrus ◽  
Gladys May Grace Siregar ◽  
Agustino ◽  
Saktioto ◽  
Iwantono ◽  
...  

Abstract Chemical activation with assisted microwave irradiation was used to produced activated carbon from orange peel waste. The activating agent was potassium hydroxide (KOH) with concentrations of 2 M, 3 M, and 4 M. The microwave irradiation was done for 15 minutes with a 630 Watt output power. KOH concentration affected the physical properties of OP-ACxM. With increasing KOH concentration, the interlayer spacing (d002 and d100 ) grew, stack height (Lc ) increased, and stack width (La) dropped. The number of pores on the surface of OP-ACxM increased after the chemical activation process. In OP-ACxM, FTIR analysis reveals the presence of O-H, C-H, C-C, C=O, C=C, and C-O.


Sign in / Sign up

Export Citation Format

Share Document