scholarly journals Theorems on analogous of Ramanujan’s remarkable product of theta-function and their explicit evaluations

2022 ◽  
Vol 40 ◽  
pp. 1-10
Author(s):  
B. N. Dharmendra ◽  
S. Vasanth Kumar

In this article, we define Em,n for any positive real numbers m and n involving Ramanujan’s product of theta-functions ψ(−q) and f(q), which is analogous to Ramanujan’s remarkable product of theta-functions and establish its several properties by Ramanujan. We establish general theorems for the explicit evaluations of Em,n and its explicit values.

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Nipen Saikia

We find some new explicit values of the parameter hk,n for positive real numbers k and n involving Ramanujan's theta-function ϕ(q) and give some applications of these new values for the explicit evaluations of Ramanujan's continued fractions. In the process, we also establish two new identities for ϕ(q) by using modular equations.


2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
Nipen Saikia

We define a productlk,nfor any positive real numberskandninvolving Ramanujan's theta-functionsϕ(q)andψ(q)which is analogous to Ramanujan's remarkable product of theta-functions recorded by Ramanujan (1957) and study its several properties. We prove general theorems for the explicit evaluations oflk,nand find some explicit values. As application of the productlk,n, we also offer explicit formulas for explicit values of Ramanujan's continued fractionV(q)in terms oflk,nand give examples.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Joshua Males ◽  
Andreas Mono ◽  
Larry Rolen

Abstract In the theory of harmonic Maaß forms and mock modular forms, mock theta functions are distinguished examples which arose from q-hypergeometric examples of Ramanujan. Recently, there has been a body of work on higher depth mock modular forms. Here, we introduce distinguished examples of these forms, which we call higher depth mock theta functions, and develop q-hypergeometric expressions for them. We provide three examples of mock theta functions of depth two, each arising by multiplying a classical mock theta function with a certain specialization of a universal mock theta function. In addition, we give their modular completions, and relate each to a q-hypergeometric series.


2018 ◽  
Vol 7 (1) ◽  
pp. 77-83
Author(s):  
Rajendra Prasad Regmi

There are various methods of finding the square roots of positive real number. This paper deals with finding the principle square root of positive real numbers by using Lagrange’s and Newton’s interpolation method. The interpolation method is the process of finding the values of unknown quantity (y) between two known quantities.


1985 ◽  
Vol 50 (1) ◽  
pp. 110-122
Author(s):  
Howard Becker

For any A ⊂ R, the Banach game B(A) is the following infinite game on reals: Players I and II alternately play positive real numbers a1; a2, a3, a4,… such that for n > 1, an < an−1. Player I wins iff ai exists and is in A.This type of game was introduced by Banach in 1935 in the Scottish Book [15], Problem 43. The (rather vague) problem which Banach posed was to characterize those sets A for which I (II) has a winning strategy in B(A). (There are three parts to Problem 43. In the first, Mazur defined a game G**(A) for every set A ⊂ R and conjectured that II has a winning strategy in G**(A) iff A is meager and I has a winning strategy in G**(A) iff A is comeager in some neighborhood; this conjecture was proved by Banach. Presumably Banach had this result in mind when he asked the question about B(A), and hoped for a similar type of characterization.) Incidentally, Problem 43 of the Scottish Book appears to be the first time infinite games of any sort were studied by mathematicians.This paper will not provide the reader with any answer to Banach's question. I know of no nontrivial way to characterize when player I (or II) wins, and I suspect there is none. This paper is concerned with a different (also rather vague) question: For which sets A is the Banach game B(A) determined? To say that B(A) is determined means, of course, that one of the players has a winning strategy for B(A).


2009 ◽  
Vol 2009 ◽  
pp. 1-11 ◽  
Author(s):  
Dağistan Simsek ◽  
Bilal Demir ◽  
Cengiz Cinar

We study the behavior of the solutions of the following system of difference equationsxn+1=max⁡{A/xn,yn/xn},yn+1=max⁡{A/yn,xn/yn}where the constantAand the initial conditions are positive real numbers.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Emin Bešo ◽  
Senada Kalabušić ◽  
Naida Mujić ◽  
Esmir Pilav

AbstractWe consider the second-order rational difference equation $$ {x_{n+1}=\gamma +\delta \frac{x_{n}}{x^{2}_{n-1}}}, $$xn+1=γ+δxnxn−12, where γ, δ are positive real numbers and the initial conditions $x_{-1}$x−1 and $x_{0}$x0 are positive real numbers. Boundedness along with global attractivity and Neimark–Sacker bifurcation results are established. Furthermore, we give an asymptotic approximation of the invariant curve near the equilibrium point.


2014 ◽  
Vol 33 (2) ◽  
pp. 59-67
Author(s):  
Pankaj Kumar ◽  
S. S. Bhatia ◽  
Vijay Kumar

In this paper, we aim to generalize the notion of statistical convergence for double sequences on probabilistic normed spaces with the help of two nondecreasing sequences of positive real numbers $\lambda=(\lambda_{n})$ and $\mu = (\mu_{n})$  such that each tending to zero, also $\lambda_{n+1}\leq \lambda_{n}+1, \lambda_{1}=1,$ and $\mu_{n+1}\leq \mu_{n}+1, \mu_{1}=1.$ We also define generalized statistically Cauchy double sequences on PN space and establish the Cauchy convergence criteria in these spaces.


2013 ◽  
Vol 11 (02) ◽  
pp. 1350010
Author(s):  
HORST ALZER

Let α and β be real numbers. We prove that the functional inequality [Formula: see text] holds for all positive real numbers x and y if and only if [Formula: see text] Here, γ denotes Euler's constant.


2020 ◽  
Vol 126 (3) ◽  
pp. 559-567
Author(s):  
Megumi Kirihata ◽  
Makoto Yamashita

We prove a strengthened form of convexity for operator monotone decreasing positive functions defined on the positive real numbers. This extends Ando and Hiai's work to allow arbitrary positive maps instead of states (or the identity map), and functional calculus by operator monotone functions defined on the positive real numbers instead of the logarithmic function.


Sign in / Sign up

Export Citation Format

Share Document