Targeted Protein Degradation: Current Status and Future Prospects

Author(s):  
Swarupananda Mukherjee ◽  
Saumyakanti Giri ◽  
Sohini Bera ◽  
Sharanya Mukherjee ◽  
Shankha Dey ◽  
...  

The protein degradation is a well-controlled, highly selective mechanism for intracellular protein degradation and its turnover. There are several proteins in our body but among them some goes for degradation at a time. Proteins which are going to be degraded are identified by a 76 amino acid polypeptide known as ubiquitin and the process is known as ubiquitination. Ubiquitation means the attachment of many ubiquitin molecules to the target protein molecule that need to be broken down. During the ubiquitination procedure iso peptide bonds are formed. And these iso peptide bonds are formed between the nitrogen molecule of the lysine residue from the target protein and the carbon molecule of the ubiquitin molecule. Through this endogenous ubiquitin-proteasome machinery, disease responsible proteins can be permanently removed. Energy is required for this process and that’s why ATP is employed in this process. This targeted protein degradation plays a very crucial role for cancer and other diseases. Through this review we just enlighten the significant points if the targeted protein degradation and its significance.

2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Clara Di Filippo ◽  
Pasquale Petronella ◽  
Fulvio Freda ◽  
Marco Scorzelli ◽  
Marco Ferretti ◽  
...  

We investigated the Ubiquitin-Proteasome System (UPS), major nonlysosomal intracellular protein degradation system, in the genesis of experimental postsurgical peritoneal adhesions. We assayed the levels of UPS within the adhered tissue along with the development of peritoneal adhesions and used the specific UPS inhibitor bortezomib in order to assess the effect of the UPS blockade on the peritoneal adhesions. We found a number of severe postsurgical peritoneal adhesions at day 5 after surgery increasing until day 10. In the adhered tissue an increased values of ubiquitin and the 20S proteasome subunit, NFkB, IL-6, TNF-αand decreased values of IkB-beta were found. In contrast, bortezomib-treated rats showed a decreased number of peritoneal adhesions, decreased values of ubiquitin and the 20S proteasome, NFkB, IL-6, TNF-α, and increased levels of IkB-beta in the adhered peritoneal tissue. The UPS system, therefore, is primarily involved in the formation of post-surgical peritoneal adhesions in rats.


Biomolecules ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1512
Author(s):  
Gang Chen ◽  
Yu Kong ◽  
You Li ◽  
Ailing Huang ◽  
Chunyu Wang ◽  
...  

Most recently, a technology termed TRIM-Away has allowed acute and rapid destruction of endogenous target proteins in cultured cells using specific antibodies and endogenous/exogenous tripartite motif 21 (TRIM21). However, the relatively large size of the full-size mAbs (150 kDa) results in correspondingly low tissue penetration and inaccessibility of some sterically hindered epitopes, which limits the target protein degradation. In addition, exogenous introduction of TRIM21 may cause side effects for treated cells. To tackle these limitations, we sought to replace full-size mAbs with the smaller format of antibodies, a nanobody (VHH, 15 kDa), and construct a new type of fusion protein named TRIMbody by fusing the nanobody and RBCC motif of TRIM21. Next, we introduced enhanced green fluorescent protein (EGFP) as a model substrate and generated αEGFP TRIMbody using a bispecific anti-EGFP (αEGFP) nanobody. Remarkably, inducible expression of αEGFP TRIMbody could specifically degrade intracellular EGFP in HEK293T cells in a time-dependent manner. By treating cells with inhibitors, we found that intracellular EGFP degradation by αEGFP TRIMbody relies on both ubiquitin–proteasome and autophagy–lysosome pathways. Taken together, these results suggested that TRIMbody-Away technology could be utilized to specifically degrade intracellular protein and could expand the potential applications of degrader technologies.


2020 ◽  
Author(s):  
Chuanyang Liu ◽  
Jingyu Kuang ◽  
Xinyuan Qiu ◽  
Lu Min ◽  
Wenying Li ◽  
...  

AbstractProtein expression and degradation are fundamental to cell function and physiological status of organisms. Interfering with protein expression not only provides powerful strategies to analyze the function of proteins but also inspires effective treatment methods for diseases caused by protein dysfunction. Recently, harnessing the power of the ubiquitin-proteasome system for targeted protein degradation (TPD) has become the focus of researches. Over the past two decades, TPD technologies, such as E3 ligase modification, PROTACs, and the Trim-Away method, have successfully re-oriented the ubiquitin-proteasome pathway and thus degraded many pathogenic proteins and even "undruggable" targets. However, A low-cost, convenient, and modularized TPD method is currently not available. Herein, we proposed a synthetic biology TPD method, termed Predator, by integrating the classic function of E3 ligase Trim21 and the expression of a bifunctional fusion protein that links Trim21 and the target protein, which leads to the formation of a ternary complex inside mammalian cells and therefore induce the ubiquitination and subsequent proteasome-dependent degradation of the target protein. We first proved this concept by using nanobody and scFv as the targeting module for the Predator system to degrade free GFP and membrane protein ErbB3, respectively. Then, we give an example of how the engineered Predator system can be developed towards biomedical solutions in the context of diabetes mellitus. Ligands-receptor interaction and adenovirus-mediated gene delivery were introduced to the Predator system, and we found this bifunctional fusion protein, in which glucagon was selected to function as the targeting module, downregulated the endogenous glucagon receptor (GCGR) and attenuated glucagon-stimulated glucose production in primary hepatocytes. Although preliminarily, our results showed that this Predator system is a highly modularized and convenient TPD method with good potential for both fundamental researches and clinical usage.Graphic abstract


Sign in / Sign up

Export Citation Format

Share Document