intracellular protein degradation
Recently Published Documents


TOTAL DOCUMENTS

116
(FIVE YEARS 12)

H-INDEX

33
(FIVE YEARS 2)

2021 ◽  
Vol 22 (21) ◽  
pp. 11595
Author(s):  
Jinhai Wang ◽  
Ying Fang ◽  
R. Andrea Fan ◽  
Christopher J. Kirk

The proteasome is responsible for mediating intracellular protein degradation and regulating cellular function with impact on tumor and immune effector cell biology. The proteasome is found predominantly in two forms, the constitutive proteasome and the immunoproteasome. It has been validated as a therapeutic drug target through regulatory approval with 2 distinct chemical classes of small molecular inhibitors (boronic acid derivatives and peptide epoxyketones), including 3 compounds, bortezomib (VELCADE), carfilzomib (KYPROLIS), and ixazomib (NINLARO), for use in the treatment of the plasma cell neoplasm, multiple myeloma. Additionally, a selective inhibitor of immunoproteasome (KZR-616) is being developed for the treatment of autoimmune diseases. Here, we compare and contrast the pharmacokinetics (PK), pharmacodynamics (PD), and metabolism of these 2 classes of compounds in preclinical models and clinical studies. The distinct metabolism of peptide epoxyketones, which is primarily mediated by microsomal epoxide hydrolase, is highlighted and postulated as a favorable property for the development of this class of compound in chronic conditions.


Biomolecules ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1512
Author(s):  
Gang Chen ◽  
Yu Kong ◽  
You Li ◽  
Ailing Huang ◽  
Chunyu Wang ◽  
...  

Most recently, a technology termed TRIM-Away has allowed acute and rapid destruction of endogenous target proteins in cultured cells using specific antibodies and endogenous/exogenous tripartite motif 21 (TRIM21). However, the relatively large size of the full-size mAbs (150 kDa) results in correspondingly low tissue penetration and inaccessibility of some sterically hindered epitopes, which limits the target protein degradation. In addition, exogenous introduction of TRIM21 may cause side effects for treated cells. To tackle these limitations, we sought to replace full-size mAbs with the smaller format of antibodies, a nanobody (VHH, 15 kDa), and construct a new type of fusion protein named TRIMbody by fusing the nanobody and RBCC motif of TRIM21. Next, we introduced enhanced green fluorescent protein (EGFP) as a model substrate and generated αEGFP TRIMbody using a bispecific anti-EGFP (αEGFP) nanobody. Remarkably, inducible expression of αEGFP TRIMbody could specifically degrade intracellular EGFP in HEK293T cells in a time-dependent manner. By treating cells with inhibitors, we found that intracellular EGFP degradation by αEGFP TRIMbody relies on both ubiquitin–proteasome and autophagy–lysosome pathways. Taken together, these results suggested that TRIMbody-Away technology could be utilized to specifically degrade intracellular protein and could expand the potential applications of degrader technologies.


Author(s):  
Swarupananda Mukherjee ◽  
Saumyakanti Giri ◽  
Sohini Bera ◽  
Sharanya Mukherjee ◽  
Shankha Dey ◽  
...  

The protein degradation is a well-controlled, highly selective mechanism for intracellular protein degradation and its turnover. There are several proteins in our body but among them some goes for degradation at a time. Proteins which are going to be degraded are identified by a 76 amino acid polypeptide known as ubiquitin and the process is known as ubiquitination. Ubiquitation means the attachment of many ubiquitin molecules to the target protein molecule that need to be broken down. During the ubiquitination procedure iso peptide bonds are formed. And these iso peptide bonds are formed between the nitrogen molecule of the lysine residue from the target protein and the carbon molecule of the ubiquitin molecule. Through this endogenous ubiquitin-proteasome machinery, disease responsible proteins can be permanently removed. Energy is required for this process and that’s why ATP is employed in this process. This targeted protein degradation plays a very crucial role for cancer and other diseases. Through this review we just enlighten the significant points if the targeted protein degradation and its significance.


Author(s):  
Xinbo Wang ◽  
Yanjin Wang ◽  
Zan Li ◽  
Jieling Qin ◽  
Ping Wang

Ferroptosis is an iron-dependent form of programmed cell death, which plays crucial roles in tumorigenesis, ischemia–reperfusion injury and various human degenerative diseases. Ferroptosis is characterized by aberrant iron and lipid metabolisms. Mechanistically, excess of catalytic iron is capable of triggering lipid peroxidation followed by Fenton reaction to induce ferroptosis. The induction of ferroptosis can be inhibited by sufficient glutathione (GSH) synthesis via system Xc– transporter-mediated cystine uptake. Therefore, induction of ferroptosis by inhibition of cystine uptake or dampening of GSH synthesis has been considered as a novel strategy for cancer therapy, while reversal of ferroptotic effect is able to delay progression of diverse disorders, such as cardiopathy, steatohepatitis, and acute kidney injury. The ubiquitin (Ub)–proteasome pathway (UPP) dominates the majority of intracellular protein degradation by coupling Ub molecules to the lysine residues of protein substrate, which is subsequently recognized by the 26S proteasome for degradation. Ubiquitination is crucially involved in a variety of physiological and pathological processes. Modulation of ubiquitination system has been exhibited to be a potential strategy for cancer treatment. Currently, more and more emerged evidence has demonstrated that ubiquitous modification is involved in ferroptosis and dominates the vulnerability to ferroptosis in multiple types of cancer. In this review, we will summarize the current findings of ferroptosis surrounding the viewpoint of ubiquitination regulation. Furthermore, we also highlight the potential effect of ubiquitination modulation on the perspective of ferroptosis-targeted cancer therapy.


2021 ◽  
Vol 14 ◽  
Author(s):  
Jorge A. Sierra-Fonseca ◽  
Jameel N. Hamdan ◽  
Alexis A. Cohen ◽  
Sonia M. Cardenas ◽  
Sigifredo Saucedo ◽  
...  

Exposure to early-life stress (ELS) can persistently modify neuronal circuits and functions, and contribute to the expression of misfolded and aggregated proteins that are hallmarks of several neurodegenerative diseases. The healthy brain is able to clear dysfunctional proteins through the ubiquitin-proteasome system (UPS) and the autophagy-lysosomal pathway (ALP). Accumulating evidence indicates that impairment of these pathways contributes to enhanced protein aggregation and neurodegeneration. While stress is a known precipitant of neurological decline, few specific mechanistic links underlying this relationship have been identified. We hypothesized that neonatal maternal separation (MatSep), a well-established model of ELS, has the ability to alter the levels of UPS and ALP components in the brain, and thus has the potential to disrupt proteostasis. The expression of proteostasis-associated protein markers was evaluated by immunoblotting in the hippocampus and cortex of adult Wistar rats that were previously subjected to MatSep. We observed multiple sex- and MatSep-specific changes in the expression of proteins in the ALP, mitophagy, and UPS pathways, particularly in the hippocampus of adult animals. In contrast, MatSep had limited influence on proteostasis marker expression in the cortex of adult animals. Our results indicate that MatSep can selectively modify the intracellular protein degradation machinery in ways that may impact the development and progression of neurodegenerative disease.


2020 ◽  
Vol 70 (1) ◽  
Author(s):  
Yasuo Kitajima ◽  
Kiyoshi Yoshioka ◽  
Naoki Suzuki

Abstract Skeletal muscle is one of the most abundant and highly plastic tissues. The ubiquitin–proteasome system (UPS) is recognised as a major intracellular protein degradation system, and its function is important for muscle homeostasis and health. Although UPS plays an essential role in protein degradation during muscle atrophy, leading to the loss of muscle mass and strength, its deficit negatively impacts muscle homeostasis and leads to the occurrence of several pathological phenotypes. A growing number of studies have linked UPS impairment not only to matured muscle fibre degeneration and weakness, but also to muscle stem cells and deficiency in regeneration. Emerging evidence suggests possible links between abnormal UPS regulation and several types of muscle diseases. Therefore, understanding of the role of UPS in skeletal muscle may provide novel therapeutic insights to counteract muscle wasting, and various muscle diseases. In this review, we focussed on the role of proteasomes in skeletal muscle and its regeneration, including a brief explanation of the structure of proteasomes. In addition, we summarised the recent findings on several diseases and elaborated on how the UPS is related to their pathological states.


Cells ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1679 ◽  
Author(s):  
Tulasi Yadati ◽  
Tom Houben ◽  
Albert Bitorina ◽  
Ronit Shiri-Sverdlov

Cathepsins are the most abundant lysosomal proteases that are mainly found in acidicendo/lysosomal compartments where they play a vital role in intracellular protein degradation,energy metabolism, and immune responses among a host of other functions. The discovery thatcathepsins are secreted and remain functionally active outside of the lysosome has caused a paradigmshift. Contemporary research has unraveled many versatile functions of cathepsins in extralysosomallocations including cytosol and extracellular space. Nevertheless, extracellular cathepsins are majorlyupregulated in pathological states and are implicated in a wide range of diseases including cancerand cardiovascular diseases. Taking advantage of the dierential expression of the cathepsinsduring pathological conditions, much research is focused on using cathepsins as diagnostic markersand therapeutic targets. A tailored therapeutic approach using selective cathepsin inhibitors isconstantly emerging to be safe and ecient. Moreover, recent development of proteomic-basedapproaches for the identification of novel physiological substrates oers a major opportunity tounderstand the mechanism of cathepsin action. In this review, we summarize the available evidenceregarding the role of cathepsins in health and disease, discuss their potential as biomarkers ofdisease progression, and shed light on the potential of extracellular cathepsin inhibitors as safetherapeutic tools.


2020 ◽  
Vol 21 (11) ◽  
pp. 3878 ◽  
Author(s):  
Willy Roque ◽  
Alexandra Boni ◽  
Jose Martinez-Manzano ◽  
Freddy Romero

Pulmonary fibrosis is a chronic and progressive lung disease characterized by the activation of fibroblasts and the irreversible deposition of connective tissue matrices that leads to altered pulmonary architecture and physiology. Multiple factors have been implicated in the pathogenesis of lung fibrosis, including genetic and environmental factors that cause abnormal activation of alveolar epithelial cells, leading to the development of complex profibrotic cascade activation and extracellular matrix (ECM) deposition. One class of proteinases that is thought to be important in the regulation of the ECM are the matrix metalloproteinases (MMPs). MMPs can be up- and down- regulated in idiopathic pulmonary fibrosis (IPF) lungs and their role depends upon their location and function. Furthermore, alterations in the ubiquitin-proteosome system (UPS), a major intracellular protein degradation complex, have been described in aging and IPF lungs. UPS alterations could potentially lead to the abnormal accumulation and deposition of ECM. A better understanding of the specific roles MMPs and UPS play in the pathophysiology of pulmonary fibrosis could potentially drive to the development of novel biomarkers that can be as diagnostic and therapeutic targets. In this review, we describe how MMPs and UPS alter ECM composition in IPF lungs and mouse models of pulmonary fibrosis, thereby influencing the alveolar epithelial and mesenchymal cell behavior. Finally, we discuss recent findings that associate MMPs and UPS interplay with the development of pulmonary fibrosis.


Proceedings ◽  
2019 ◽  
Vol 22 (1) ◽  
pp. 101
Author(s):  
Carles Galdeano

Proteolysis targeting chimera molecules (PROTACS) are heterobifunctional small moleculesdesigned to induce intracellular protein degradation [...]


Sign in / Sign up

Export Citation Format

Share Document