scholarly journals Analytical and Experimental Evaluation of Handovers in IPv6 Mobility Management Protocols

2016 ◽  
Vol 8 (1) ◽  
pp. 104 ◽  
Author(s):  
Javier Carmona-Murillo ◽  
David Cortés-Polo ◽  
Jesús Calle-Cancho ◽  
José-Luis González-Sánchez ◽  
Francisco-Javier Rodríguez-Pérez

Mobile data traffic in the Internet has experienced an exponential growth due to the widespread presence of multimedia capable mobile devices and the deployment of multiple wireless networks. With this continuous development of mobile communications, the achievement of an efficient IP mobility management protocol has revealed as one of the major challenges in next-generation wireless networks. Mobility management solutions are responsible for maintaining the ongoing communications while the user roams among distinct networks. Mobile IPv6 and Proxy Mobile IPv6 are the most representative solutions standardized by the IETF. Recently, the IPv6 mobility support has been newly integrated into the kernel sources and Linux mobility ready kernels are available from versions 3.8.1. In this article, we conduct an analytic and experimental evaluation of Mobile IPv6 and Proxy Mobile IPv6. We develop an analytic model of the signaling and handover latency. Moreover, we present an experimental study these protocols based on their open source implementations. We provide numerical results based on experiments made in real scenarios under different network conditions.

2014 ◽  
Vol 10 (3) ◽  
pp. 287-305 ◽  
Author(s):  
Illkyun Im ◽  
Jongpil Jeong

With recent advancements in wireless communication technologies, mobile multicasting is becoming important, in an effort to use network resources more efficiently. In the past, when various mobile IP-based multicast techniques were proposed, the focus was on the costs needed for network delivery to provide multicast services, as well as on minimizing the multicast handover delay. However, it is fundamentally difficult to resolve the problems of handover delay and tunnel convergence for techniques using MIPv6 (Mobile IPv6), a host-based mobility management protocol. To resolve these problems, the network-based mobility management protocol PMIPv6 (Proxy Mobile IPv6) was standardized. Although performance is improved in PMIPv6 over MIPv6, it still suffers from problems of handover delay and tunnel convergence. To overcome these limitations, a technique called LFH (Low-cost and Fast Handoff) is proposed in this paper, for fast and low-cost mobility management with multicasting support in PMIPv6 networks. To reduce the interactions between the complex multicast routing protocol and multicast messages, a simplified proxy method called MLD (Multicast Listener Discovery) is implemented and modified. Furthermore, a TCR (Tunnel Combination and Reconstruction) algorithm was used in the multicast handover procedure within the LMA (Local Mobility Anchor) domain, as well as in the multicast handover procedure between domains, in order to overcome the problem of tunnel convergence. It was found that, compared to other types of multicast techniques, LFH reduces multicast delay, and requires lower cost.


2015 ◽  
Vol 72 (5) ◽  
Author(s):  
Mojtaba Alizadeh ◽  
Mazdak Zamani ◽  
Sabariah Baharun ◽  
Wan Haslina Hassan ◽  
Touraj Khodadadi

Mobility management protocols support mobility for roaming mobile nodes in order to provide seamless connectivity. Proxy Mobile IPv6 is a network-based localized mobility management protocol that is more suitable for resource constrained devices among different mobility management schemes. In this protocol, all mobility signaling procedures are completed by network entity not mobile node. According to the Proxy Mobile IPv6 architecture, an authentication procedure has a key role to protect the network against different security threats; however, the details of authentication procedure is not specified in this standard. In this paper, different security features are explored to evaluate the authentication protocols in Proxy Mobile IPv6. The existing authentication approaches can be analyzed based on these criteria to find security issues.


2013 ◽  
Vol 284-287 ◽  
pp. 2794-2798
Author(s):  
Dong Xu Jin ◽  
Fei Shi ◽  
Joon Sup Chin ◽  
Joo Seok Song

With the development of the wireless internet, there are more and more mobile terminals. Without a mobility management protocol a mobile terminal could not communicate with other terminals when it is away from its home network. Mobile IPv6 is proposed which is host-based mobility management protocol. But it has several drawbacks, such as wireless link resource waste, load or consumption of power in mobile terminal is large. To overcome the weakness of host-based mobility management protocol, network-based mobility management protocol called Proxy Mobile IPv6 (PMIPv6) is standardized by the IETF NETLMM working group, and it is starting to attract considerable attentions. Although several proposals have been made for Route Optimization (RO), they still need too many communications and it may cause communication delay. In this paper we proposed a time-efficient RO in PMIPv6 by optimize the procedure of it. We use the characteristic of anycast to achieve the time efficiency. By the mathematical analysis we prove that the proposed protocol has shorter latency and supports faster mobility of the mobile terminals.


2019 ◽  
Vol 2019 ◽  
pp. 1-21 ◽  
Author(s):  
Ákos Leiter ◽  
László Bokor

The continuous increase of mobile data traffic volume creates new challenges for telecommunication network operators. As a possible solution, many traffic offloading techniques have been proposed. In parallel, there is a trend to handle all the access techniques under the umbrella of IP, including non-3GPP networks (e.g., Wi-Fi), mainly with the help of IPv6. In this paper we provide a new architectural proposal in Evolved Packet Core (EPC) described as flow-based and operator-centric dynamic mobility management with Proxy Mobile IPv6 (PMIPv6). This new approach is supported by current EPC entities including Policy and Charging Rules Function (PCRF), Access Network Discovery and Selection Function (ANDSF), and Local Mobility Anchor (LMA) and by defining a novel communication scheme between them. The proposal was evaluated in a virtual testbed environment, and measurements based simulations were carried out where the solution showed significant benefits by enhancing operator flexibility, increasing user experience, and decreasing signaling overhead due to its highly dynamic operation and optimized flow-level behavior.


Sign in / Sign up

Export Citation Format

Share Document