scholarly journals Optimized Motion Planning Considering the Lifetime for Bimanual Robotic Assembly

2015 ◽  
Vol 21 (10) ◽  
pp. 972-976
Author(s):  
Myun Joong Hwang
Author(s):  
Yi Liu ◽  
Ming Cong ◽  
Hang Dong ◽  
Dong Liu

Purpose The purpose of this paper is to propose a new method based on three-dimensional (3D) vision technologies and human skill integrated deep learning to solve assembly positioning task such as peg-in-hole. Design/methodology/approach Hybrid camera configuration was used to provide the global and local views. Eye-in-hand mode guided the peg to be in contact with the hole plate using 3D vision in global view. When the peg was in contact with the workpiece surface, eye-to-hand mode provided the local view to accomplish peg-hole positioning based on trained CNN. Findings The results of assembly positioning experiments proved that the proposed method successfully distinguished the target hole from the other same size holes according to the CNN. The robot planned the motion according to the depth images and human skill guide line. The final positioning precision was good enough for the robot to carry out force controlled assembly. Practical implications The developed framework can have an important impact on robotic assembly positioning process, which combine with the existing force-guidance assembly technology as to build a whole set of autonomous assembly technology. Originality/value This paper proposed a new approach to the robotic assembly positioning based on 3D visual technologies and human skill integrated deep learning. Dual cameras swapping mode was used to provide visual feedback for the entire assembly motion planning process. The proposed workpiece positioning method provided an effective disturbance rejection, autonomous motion planning and increased overall performance with depth images feedback. The proposed peg-hole positioning method with human skill integrated provided the capability of target perceptual aliasing avoiding and successive motion decision for the robotic assembly manipulation.


Procedia CIRP ◽  
2019 ◽  
Vol 86 ◽  
pp. 74-79 ◽  
Author(s):  
Niki Kousi ◽  
Dimosthenis Dimosthenopoulos ◽  
Aleksandros-Stereos Matthaiakis ◽  
George Michalos ◽  
Sotiris Makris

2006 ◽  
Author(s):  
Jonathan Vaughan ◽  
Steven Jax ◽  
David A. Rosenbaum
Keyword(s):  

Author(s):  
Varun Kumar ◽  
Lakshya Gaur ◽  
Arvind Rehalia

In this paper the authors have explained the development of robotic vehicle prepared by them, which operates autonomously and is not controlled by the users, except for selection of modes. The different modes of the automated vehicle are line following, object following and object avoidance with alternate trajectory determination. The complete robotic assembly is mounted on a chassis comprising of Arduino Uno, Servo motors, HC-SRO4 (Ultrasonic sensor), DC motors (Geared), L293D Motor Driver, IR proximity sensors, Voltage Regulator along with castor wheel and two normal wheels.


Author(s):  
Ioan Sucan ◽  
Sachin Chitta
Keyword(s):  


1995 ◽  
Author(s):  
Sumanta Guha ◽  
Rama D. Puvvada ◽  
Deepti Suri ◽  
Ichiro Suzuki

Sign in / Sign up

Export Citation Format

Share Document