scholarly journals Differentiation between Cerebral Hemorrhage and Contrast Extravasation Using Dual Energy Computed Tomography after Intra-Arterial Neuro Interventional Procedures

2020 ◽  
Vol 104 (1) ◽  
Author(s):  
Yasmine Zaouak ◽  
Niloufar Sadeghi ◽  
Nicolae Sarbu ◽  
Noémie Ligot ◽  
Boris Lubicz
2021 ◽  
Vol 12 ◽  
pp. 225
Author(s):  
Mitchell Stanton ◽  
Gian Sparti

Background: Along with surgical clipping, endovascular management is one of the mainstay treatment options for cerebral aneurysms. However, immediate post procedural imaging is often hard to interpret due to the presence of contrast material. Dual-energy computed tomography (CT) allows differentiation between contrast extravasation and intracranial hemorrhage and this case illustrates the importance of this following endovascular treatment of an unruptured cerebral aneurysm. Case Description: A patient presented with acute ophthalmoplegia secondary to mass effect from an intracavernous ICA fusiform aneurysm. The patient underwent an endovascular flow diverting stent to treat this aneurysm. Post procedure, the patient had a reduced level of consciousness and underwent a conventional CT showing diffuse subarachnoid hyperdensity of the left hemisphere. Dual-energy CT allowed accurate differentiation and illustrated diffuse contrast material extravasation, allowing patient to continue on dual antiplatelets and therapeutic anticoagulation to reduce the risk of ischemic injury post endovascular stent. Conclusion: Use of dual-energy CT in the setting of endovascular management of intracranial aneurysms allows accurate diagnosis of any postoperative complications. Specifically, differentiating between subarachnoid hemorrhage and contrast extravasation is vital in these patients due to the significant consequences to their ongoing management in regard to continuation or cessation of antiplatelets or anticoagulation. With increasing access to this technology, its use should become standard practice in the post-operative investigation of these patients undergoing endovascular treatment.


2019 ◽  
Author(s):  
Torsten Diekhoff ◽  
Michael Fuchs ◽  
Nils Engelhard ◽  
Kay-Geert Hermann ◽  
Michael Putzier ◽  
...  

2011 ◽  
Vol 12 (1) ◽  
pp. 62-63 ◽  
Author(s):  
Thomas Henzler ◽  
Steffen Diehl ◽  
Susanne Jochum ◽  
Tim Sueselbeck ◽  
Stefan O Schoenberg ◽  
...  

Diagnostics ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 161
Author(s):  
Masakatsu Tsurusaki ◽  
Keitaro Sofue ◽  
Masatoshi Hori ◽  
Kosuke Sasaki ◽  
Kazunari Ishii ◽  
...  

Dual-energy computed tomography (DECT) is an imaging technique based on data acquisition at two different energy settings. Recent advances in CT have allowed data acquisitions and simultaneous analyses of X-rays at two energy levels, and have resulted in novel developments in the field of abdominal imaging. The use of low and high X-ray tube voltages in DECT provide fused images that improve the detection of liver tumors owing to the higher contrast-to-noise ratio (CNR) of the tumor compared with the liver. The use of contrast agents in CT scanning improves image quality by enhancing the CNR and signal-to-noise ratio while reducing beam-hardening artifacts. DECT can improve detection and characterization of hepatic abnormalities, including mass lesions. The technique can also be used for the diagnosis of steatosis and iron overload. This article reviews and illustrates the different applications of DECT in liver imaging.


Diagnostics ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 870
Author(s):  
Saif Afat ◽  
Ahmed E. Othman ◽  
Konstantin Nikolaou ◽  
Sebastian Gassenmaier

To evaluate contrast-enhanced dual-energy computed tomography (DECT) chest examinations regarding pulmonary perfusion patterns and pulmonary opacities in patients with confirmed COVID-19 disease. Fourteen patients with 24 DECT examinations performed between April and May 2020 were included in this retrospective study. DECT studies were assessed independently by two radiologists regarding pulmonary perfusion defects, using a Likert scale ranging from 1 to 4. Furthermore, in all imaging studies the extent of pulmonary opacities was quantified using the same rating system as for perfusion defects. The main pulmonary findings were ground glass opacities (GGO) in all 24 examinations and pulmonary consolidations in 22 examinations. The total lung scores after the addition of the scores of the single lobes showed significantly higher values of opacities compared to perfusion defects, with a median of 12 (9–18) for perfusion defects and a median of 17 (15–19) for pulmonary opacities (p = 0.002). Furthermore, mosaic perfusion patterns were found in 19 examinations in areas with and without GGO. Further studies will be necessary to investigate the pathophysiological background of GGO with maintained perfusion compared to GGO with reduced perfusion, especially regarding long-term lung damage and prognosis.


2020 ◽  
Vol 21 ◽  
pp. S85
Author(s):  
V. Rudenko ◽  
N. Serova ◽  
L. Kapanadze ◽  
M. Taratkin ◽  
Z. Okhunov ◽  
...  

2016 ◽  
Vol 68 (6) ◽  
pp. 769-775 ◽  
Author(s):  
Sara Bayat ◽  
Opetaia Aati ◽  
Jürgen Rech ◽  
Mark Sapsford ◽  
Alexander Cavallaro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document