scholarly journals Dual-Energy Computed Tomography of the Lung in COVID-19 Patients: Mismatch of Perfusion Defects and Pulmonary Opacities

Diagnostics ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 870
Author(s):  
Saif Afat ◽  
Ahmed E. Othman ◽  
Konstantin Nikolaou ◽  
Sebastian Gassenmaier

To evaluate contrast-enhanced dual-energy computed tomography (DECT) chest examinations regarding pulmonary perfusion patterns and pulmonary opacities in patients with confirmed COVID-19 disease. Fourteen patients with 24 DECT examinations performed between April and May 2020 were included in this retrospective study. DECT studies were assessed independently by two radiologists regarding pulmonary perfusion defects, using a Likert scale ranging from 1 to 4. Furthermore, in all imaging studies the extent of pulmonary opacities was quantified using the same rating system as for perfusion defects. The main pulmonary findings were ground glass opacities (GGO) in all 24 examinations and pulmonary consolidations in 22 examinations. The total lung scores after the addition of the scores of the single lobes showed significantly higher values of opacities compared to perfusion defects, with a median of 12 (9–18) for perfusion defects and a median of 17 (15–19) for pulmonary opacities (p = 0.002). Furthermore, mosaic perfusion patterns were found in 19 examinations in areas with and without GGO. Further studies will be necessary to investigate the pathophysiological background of GGO with maintained perfusion compared to GGO with reduced perfusion, especially regarding long-term lung damage and prognosis.

Respiration ◽  
2016 ◽  
Vol 92 (6) ◽  
pp. 404-413
Author(s):  
Frédéric Lador ◽  
Anne-Lise Hachulla ◽  
Olivia Hohn ◽  
Jérôme Plojoux ◽  
Maxime Ronot ◽  
...  

2018 ◽  
Vol 48 (12) ◽  
pp. 1008-1019 ◽  
Author(s):  
Keitaro Sofue ◽  
Masakatsu Tsurusaki ◽  
Achille Mileto ◽  
Tomoko Hyodo ◽  
Kosuke Sasaki ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
pp. 21-33
Author(s):  
Cecilia Muñoz ◽  
Anghelo Silencio ◽  
Isna Larico

Objectives: Analysing the iodine map distribution in patients with pulmonary embolism diagnosis by Dual Energy Computed Tomography. Materials and methods: Twenty-four images of pulmonary angiotomography by dual energy computed tomography were used to determinate the presence of pulmonary thrombi and identify the perfusion defects (PDs) in the Iodine Maps. Moreover, the iodine density (mg/ml) were measured in normal lung parenchyma and lung parenchyma with PDs areas. The documentary analysis was used thought the data collection sheet and the Likert scale questionnaire. The statistic software SPSS v.25 was used. Results: Thirty-four thrombi were found (21 occlusive and 13 partials occlusive) at monochromatic images. Forty-one perfusion defects (PD) were found at Iodine Maps, these have multiple origins: pulmonary thrombi (69.23%), artifacts (17.95%) and other alterations (12.82%). Furthermore, two new thrombi (5.56%) were identified, both were occlusive and segmental level. Mean Iodine density showed statistically significant differences among normal lung parenchyma (1.65 ± 0.66 mg/ml; [0.77-2.79 mg/ ml]) and parenchyma with PD areas (0.51 ± 0.26 mg/ml; [0.12-1.02 mg/ml])(p=0.000). Mean iodine density also had statistically significant differences between parenchyma with occlusive PD and partial occlusive PD (p=0.000). Iodine Map diagnostic quality was excellent (54.17%), good (33.33%), moderate (12.50%). Conclusion: The Iodine distribution Map offers a benefit greater than 5% in the diagnosis of pulmonary embolism by Dual-Energy Computed Tomography.  


Sign in / Sign up

Export Citation Format

Share Document