High-Throughput Discovery of Cancer Cell Surface Interactions by Pairing cDNA Phage Display and Next Generation Sequencing

Author(s):  
Simeon Andrews ◽  
Joel Malek
2019 ◽  
Vol 26 (8) ◽  
pp. 620-633 ◽  
Author(s):  
Nousheen Bibi ◽  
Hafsa Niaz ◽  
Ted Hupp ◽  
Mohammad Amjad Kamal ◽  
Sajid Rashid

Background: Human proteome contains a plethora of short linear peptide motifs that is crucial for signaling and other cellular processes. These motifs are difficult to identify due to lack of systematic approach for their detection. Objective: Here we demonstrate the use of peptide phage display in combination with high throughput next generation sequencing to identify enriched peptide sequences through biopanning process against polo box domain (PBD) of mitotic polo like kinase 1 (Plk1). Methods: Purified recombinant Plk1 and two unrelated controls namely B-lymphocyte antigen (CD20) and fluorescent protein (mCherry) were subjected to peptide phage display analysis. Bacterially-propagated phage DNA was amplified by PCR using triplet bar coded primers to tag the pool from each amplicon. Results: Proteomic peptide phage display along with next generation sequencing and Bioinformatics analysis demonstrated several known and putative novel interactions which were potentially related to Plk1-PBD. With our strategy, we were able to identify and characterize several Plk1-PBD binding peptides, as well as define more precisely, consensus sequences. Conclusion: We believe that this information could provide valuable tools for exploring novel interaction involved in Plk1 signaling as well as to choose peptides for Plk1 specific drug development.


2019 ◽  
Vol 25 (31) ◽  
pp. 3350-3357 ◽  
Author(s):  
Pooja Tripathi ◽  
Jyotsna Singh ◽  
Jonathan A. Lal ◽  
Vijay Tripathi

Background: With the outbreak of high throughput next-generation sequencing (NGS), the biological research of drug discovery has been directed towards the oncology and infectious disease therapeutic areas, with extensive use in biopharmaceutical development and vaccine production. Method: In this review, an effort was made to address the basic background of NGS technologies, potential applications of NGS in drug designing. Our purpose is also to provide a brief introduction of various Nextgeneration sequencing techniques. Discussions: The high-throughput methods execute Large-scale Unbiased Sequencing (LUS) which comprises of Massively Parallel Sequencing (MPS) or NGS technologies. The Next geneinvolved necessarily executes Largescale Unbiased Sequencing (LUS) which comprises of MPS or NGS technologies. These are related terms that describe a DNA sequencing technology which has revolutionized genomic research. Using NGS, an entire human genome can be sequenced within a single day. Conclusion: Analysis of NGS data unravels important clues in the quest for the treatment of various lifethreatening diseases and other related scientific problems related to human welfare.


2012 ◽  
Vol 37 (5) ◽  
pp. 811-820 ◽  
Author(s):  
Rajeev K Varshney ◽  
Himabindu Kudapa ◽  
Manish Roorkiwal ◽  
Mahendar Thudi ◽  
Manish K Pandey ◽  
...  

BMC Genomics ◽  
2018 ◽  
Vol 19 (1) ◽  
Author(s):  
Wells W. Wu ◽  
Je-Nie Phue ◽  
Chun-Ting Lee ◽  
Changyi Lin ◽  
Lai Xu ◽  
...  

2019 ◽  
Vol 220 (10) ◽  
pp. 1609-1619 ◽  
Author(s):  
Sarah Wagner ◽  
David Roberson ◽  
Joseph Boland ◽  
Aimée R Kreimer ◽  
Meredith Yeager ◽  
...  

AbstractBackgroundHuman papillomaviruses (HPV) cause over 500 000 cervical cancers each year, most of which occur in low-resource settings. Human papillomavirus genotyping is important to study natural history and vaccine efficacy. We evaluated TypeSeq, a novel, next-generation, sequencing-based assay that detects 51 HPV genotypes, in 2 large international epidemiologic studies.MethodsTypeSeq was evaluated in 2804 cervical specimens from the Study to Understand Cervical Cancer Endpoints and Early Determinants (SUCCEED) and in 2357 specimens from the Costa Rica Vaccine Trial (CVT). Positive agreement and risks of precancer for individual genotypes were calculated for TypeSeq in comparison to Linear Array (SUCCEED). In CVT, positive agreement and vaccine efficacy were calculated for TypeSeq and SPF10-LiPA.ResultsWe observed high overall and positive agreement for most genotypes between TypeSeq and Linear Array in SUCCEED and SPF10-LiPA in CVT. There was no significant difference in risk of precancer between TypeSeq and Linear Array in SUCCEED or in estimates of vaccine efficacy between TypeSeq and SPF10-LiPA in CVT.ConclusionsThe agreement of TypeSeq with Linear Array and SPF10-LiPA, 2 well established standards for HPV genotyping, demonstrates its high accuracy. TypeSeq provides high-throughput, affordable HPV genotyping for world-wide studies of cervical precancer risk and of HPV vaccine efficacy.


PLoS ONE ◽  
2016 ◽  
Vol 11 (3) ◽  
pp. e0151775 ◽  
Author(s):  
Avi Z. Rosenberg ◽  
Michael D. Armani ◽  
Patricia A. Fetsch ◽  
Liqiang Xi ◽  
Tina Thu Pham ◽  
...  

2010 ◽  
Vol 7 (8) ◽  
pp. iii-iv ◽  
Author(s):  
Haiying Grunenwald ◽  
Brad Baas ◽  
Nicholas Caruccio ◽  
Fraz Syed

Sign in / Sign up

Export Citation Format

Share Document