scholarly journals Non-ribosomal Ribosome Assembly Factors in Escherichia coli

2014 ◽  
Vol 24 (8) ◽  
pp. 915-926
Author(s):  
Eunsil Choi ◽  
Jihwan Hwang
2021 ◽  
Vol 22 (9) ◽  
pp. 4359
Author(s):  
Sara Martín-Villanueva ◽  
Gabriel Gutiérrez ◽  
Dieter Kressler ◽  
Jesús de la Cruz

Ubiquitin is a small protein that is highly conserved throughout eukaryotes. It operates as a reversible post-translational modifier through a process known as ubiquitination, which involves the addition of one or several ubiquitin moieties to a substrate protein. These modifications mark proteins for proteasome-dependent degradation or alter their localization or activity in a variety of cellular processes. In most eukaryotes, ubiquitin is generated by the proteolytic cleavage of precursor proteins in which it is fused either to itself, constituting a polyubiquitin precursor, or as a single N-terminal moiety to ribosomal proteins, which are practically invariably eL40 and eS31. Herein, we summarize the contribution of the ubiquitin moiety within precursors of ribosomal proteins to ribosome biogenesis and function and discuss the biological relevance of having maintained the explicit fusion to eL40 and eS31 during evolution. There are other ubiquitin-like proteins, which also work as post-translational modifiers, among them the small ubiquitin-like modifier (SUMO). Both ubiquitin and SUMO are able to modify ribosome assembly factors and ribosomal proteins to regulate ribosome biogenesis and function. Strikingly, ubiquitin-like domains are also found within two ribosome assembly factors; hence, the functional role of these proteins will also be highlighted.


Microbiology ◽  
1982 ◽  
Vol 128 (5) ◽  
pp. 997-1001
Author(s):  
P. D. Butler ◽  
P. F. G. Sims ◽  
D. G. Wild

2020 ◽  
Author(s):  
Andreas Schedlbauer ◽  
Idoia Iturrioz ◽  
Borja Ochoa-Lizarralde ◽  
Tammo Diercks ◽  
Jorge Pedro López-Alonso ◽  
...  

While a structural description of the molecular mechanisms guiding ribosome assembly in eukaryotic systems is emerging, bacteria employ an unrelated core set of assembly factors for which high-resolution structural information is still missing. To address this, we used single-particle cryo-EM to visualize the effects of bacterial ribosome assembly factors RimP, RbfA, RsmA, and RsgA on the conformational landscape of the 30S ribosomal subunit and obtained eight snapshots representing late steps in the folding of the decoding center. Analysis of these structures identifies a conserved secondary structure switch in the 16S rRNA central to decoding site maturation, and suggests both a sequential order of action and molecular mechanisms for the assembly factors in coordinating and controlling this switch. Structural and mechanistic parallels between bacterial and eukaryotic systems indicate common folding features inherent to all ribosomes.


2009 ◽  
Vol 37 (19) ◽  
pp. 6540-6549 ◽  
Author(s):  
Dmitrii Trubetskoy ◽  
Florence Proux ◽  
Frédéric Allemand ◽  
Marc Dreyfus ◽  
Isabelle Iost

RNA ◽  
2020 ◽  
pp. rna.077610.120
Author(s):  
Jay Rai ◽  
Melissa D. Parker ◽  
Haina Huang ◽  
Stefan Choy ◽  
Homa Ghalei ◽  
...  

2014 ◽  
Vol 207 (4) ◽  
pp. 481-498 ◽  
Author(s):  
Jochen Baßler ◽  
Helge Paternoga ◽  
Iris Holdermann ◽  
Matthias Thoms ◽  
Sander Granneman ◽  
...  

Eukaryotic ribosome biogenesis involves ∼200 assembly factors, but how these contribute to ribosome maturation is poorly understood. Here, we identify a network of factors on the nascent 60S subunit that actively remodels preribosome structure. At its hub is Rsa4, a direct substrate of the force-generating ATPase Rea1. We show that Rsa4 is connected to the central protuberance by binding to Rpl5 and to ribosomal RNA (rRNA) helix 89 of the nascent peptidyl transferase center (PTC) through Nsa2. Importantly, Nsa2 binds to helix 89 before relocation of helix 89 to the PTC. Structure-based mutations of these factors reveal the functional importance of their interactions for ribosome assembly. Thus, Rsa4 is held tightly in the preribosome and can serve as a “distribution box,” transmitting remodeling energy from Rea1 into the developing ribosome. We suggest that a relay-like factor network coupled to a mechano-enzyme is strategically positioned to relocate rRNA elements during ribosome maturation.


Sign in / Sign up

Export Citation Format

Share Document