The morphological plasticity of Retiral ganglion cells during development and regeneration : a lucifer yellow intracellular injection study

1991 ◽  
Author(s):  
Kam-cheung Lau
1993 ◽  
Vol 707 (1 Molecular Bas) ◽  
pp. 486-488
Author(s):  
MITSUHIKO MATSUMOTO ◽  
REIKO FUJITA ◽  
SHINGO KIMURA ◽  
KAZUHIKO SASAKI ◽  
MAKOTO SATO

1985 ◽  
Vol 224 (1237) ◽  
pp. 475-488 ◽  

When cat retina is incubated in vitro with the fluorescent dye, 4',6- diamidino-2-phenyl-indole (DAPI), a uniform population of neurons is brightly labelled at the inner border of the inner nuclear layer. The dendritic morphology of the DAPI-labelled cells was defined by iontophoretic injection of Lucifer yellow under direct microscopic control: all the filled cells had the narrow-field bistratified morphology that is distinctive of the A ll amacrine cells previously described from Golgistained retinae. Although the A ll amacrines are principal interneurons in the rod-signal pathway, their density distribution does not follow the topography of the rod receptors, but peaks in the central area like the cone receptors and the ganglion cells. There are some 512000 A ll amacrines in the cat retina and their density ranges from 500 cells per square millimetre at the superior margin to 5300 cells per square millimetre in the centre (retinal area is 450 mm2). The isodensity contours are kite-shaped, particularly at intermediate densities, with a horizontal elongation towards nasal retina. The cell body size and the dendritic dimensions of A ll amacrines increase with decreasing cell density. The lobular dendrites in sublamina a of the inner plexiform layer span a restricted field of 16—45 pm diameter, while the arboreal dendrites in sublamina b form a varicose tree of 18—95 pm diameter. The dendritic field coverage of the lobular appendages is close to 1.0 (+ 0.2) at all eccentricities whereas the coverage of the arboreal dendrites doubles within the first 1.5 mm and then remains constant at 3.8 ( + 0.7) throughout the periphery.


1990 ◽  
Vol 64 (3) ◽  
pp. 736-744 ◽  
Author(s):  
A. Elste ◽  
J. Koester ◽  
E. Shapiro ◽  
P. Panula ◽  
J. H. Schwartz

1. We have identified putative histaminergic neurons in the central nervous system of Aplysia californica by light-microscopic autoradiography after uptake of [3H]histamine and by immunohistochemistry with the use of an antibody specific for histamine. 2. In the cerebral ganglion cells previously shown to contain histamine (C2 and 2 large neighboring cells in the E cluster and a group of smaller cells in the L cluster) were identified both by uptake of [3H]histamine and by histamine immunoreactivity. The identification of C2 was confirmed by experiments in which individual C2s were characterized electrophysiologically and injected with Lucifer yellow before processing for immunohistochemistry. The giant serotonergic neuron did not take up [3H]histamine and was not immunoreactive. 3. In the abdominal ganglion two clusters of cells--one in the left hemiganglion and the other in the right--took up [3H]histamine and were histamine immunoreactive. These clusters are located in the regions occupied by the 30 identified respiratory interneurons, R25 and L25. Individual cells in the R25 and L25 clusters were identified electrophysiologically, marked by injection of Lucifer yellow, and processed for immunocytochemistry. Eleven of the 30 L25 cells examined (from 7 ganglia) and 2 of the 25 R25 cells (from 6 ganglia) that had been marked with Lucifer yellow were also histamine immunoreactive. 4. Also in the abdominal ganglion, identified cells in the L32 cluster were not histamine immunoreactive and did not take up [3H]histamine. These interneurons, which mediate presynaptic inhibition, had previously been considered histaminergic. Neurons in the ganglion known to use transmitters other than histamine (L10, R2, RB cells, and bag cells) were not histamine immunoreactive.(ABSTRACT TRUNCATED AT 250 WORDS)


1983 ◽  
Vol 244 (5) ◽  
pp. C419-C421 ◽  
Author(s):  
J. A. Jarrell

The cells of Necturus gallbladder epithelium are electrically coupled. This work used intracellular injection of the fluorescent dye Lucifer yellow to demonstrate that these cells are also dye coupled and that this coupling is rapidly and reversibly inhibited by high concentrations of carbon dioxide. Dye coupling is also inhibited by the calcium ionophore A23187.


Sign in / Sign up

Export Citation Format

Share Document