Reversible carbon dioxide-induced inhibition of dye coupling in Necturus gallbladder

1983 ◽  
Vol 244 (5) ◽  
pp. C419-C421 ◽  
Author(s):  
J. A. Jarrell

The cells of Necturus gallbladder epithelium are electrically coupled. This work used intracellular injection of the fluorescent dye Lucifer yellow to demonstrate that these cells are also dye coupled and that this coupling is rapidly and reversibly inhibited by high concentrations of carbon dioxide. Dye coupling is also inhibited by the calcium ionophore A23187.

Blood ◽  
1991 ◽  
Vol 77 (5) ◽  
pp. 996-1005 ◽  
Author(s):  
H Lu ◽  
C Soria ◽  
EM Cramer ◽  
J Soria ◽  
J Maclouf ◽  
...  

Abstract It is known that at 37 degrees C plasmin may have two opposite effects on platelets: at high concentrations (greater than 1.5 caseinolytic units [CU]/mL), plasmin activates platelets; at lower concentrations (0.1 to 1.0 CU/mL) it inhibits platelet activation induced by thrombin, collagen, or calcium ionophore A23187. In this study, we report that when lowering the incubation temperature to 22 degrees C, plasmin at low concentrations (0.1 to 0.5 CU/mL) fully activated platelets. When platelets were treated with 0.2 CU/mL of plasmin, lowering the incubation temperature from 37 degrees C to 22 degrees C resulted in an increase in the expression of fibrinogen receptors, in platelet release and aggregation. Thromboxane A2 was not generated by plasmin treatment at either temperature. Ultrastructural studies showed that platelets responded to low-dose plasmin at 37 degrees C by forming pseudopods, centralizing granules without fibrinogen release, whereas at 22 degrees C the same dose of plasmin caused platelet degranulation with the appearance of alpha-granule fibrinogen within the lumen of the surface connected canalicular system. In addition, at 22 degrees C plasmin at doses insufficient to induce platelet aggregation potentiated platelet response to thrombin. Thus, we suggest that plasmin may initiate both activating and inhibitory processes within platelets and that the change of temperature could influence this balance. These results may be of clinical relevance, because the fibrinolytic system was found activated during cardiopulmonary bypass in which the temperature of patient's blood circulation was reduced. This temperature-dependent behavior is also an interesting model for a further study on platelet response to serine proteinases.


1984 ◽  
Vol 99 (4) ◽  
pp. 1235-1241 ◽  
Author(s):  
A A Aderem ◽  
W A Scott ◽  
Z A Cohn

Murine peritoneal macrophages cultured in minimal essential medium (alpha-MEM; 118 mM Na+, 5 mM K+) released arachidonic acid (20:4) from phospholipids on encountering a phagocytic stimulus of unopsonized zymosan. In high concentrations of extracellular K+ (118 mM), 3H release from cells prelabeled with [3H]20:4 was inhibited 80% with minimal reduction (18%) in phagocytosis. The inhibitory effect of K+ on 20:4 release was fully reversed on returning cells to medium containing Na+ (118 mM). Preingestion of zymosan particles by macrophages maintained in high K+ medium resulted in cells being "primed" for 20:4 release, which was only effected (without the further addition of particles) by changing the medium to one containing Na+. In contrast, 20:4 release from cells stimulated with the calcium ionophore A23187 was unimpaired by the elevated K+ medium, suggesting no direct effect of high K+ on the phospholipase. Macrophages stimulated with zymosan in alpha-MEM metabolized the released 20:4 to prostacyclin, prostaglandin E2 (PGE2), and leukotriene C (LTC). The smaller quantity of released 20:4 in high K+ medium was recovered as 6-Keto-PGF1 alpha, the breakdown product of prostacyclin, and PGE2. No LTC was synthesized. In high K+, resting (no zymosan) macrophages synthesized hydroxyeicosatetraenoic acids from exogeneously supplied 20:4 in proportions similar to cells maintained in alpha-MEM. These findings and the similarity of products (including LTC) produced by A23187 stimulated cells in alpha-MEM and high K+ medium indicated that the cyclooxygenase and lipoxygenase pathway enzymes were not directly inhibited by high extracellular K+. We conclude that high concentrations of extracellular K+ uncouple phagocytosis of unopsonized zymosan from the induction of the phospholipase responsible for the 20:4 cascade and suggest that the lesion is at the level of signal transduction between the receptor-ligand complex and the phospholipase.


Blood ◽  
1991 ◽  
Vol 77 (5) ◽  
pp. 996-1005
Author(s):  
H Lu ◽  
C Soria ◽  
EM Cramer ◽  
J Soria ◽  
J Maclouf ◽  
...  

It is known that at 37 degrees C plasmin may have two opposite effects on platelets: at high concentrations (greater than 1.5 caseinolytic units [CU]/mL), plasmin activates platelets; at lower concentrations (0.1 to 1.0 CU/mL) it inhibits platelet activation induced by thrombin, collagen, or calcium ionophore A23187. In this study, we report that when lowering the incubation temperature to 22 degrees C, plasmin at low concentrations (0.1 to 0.5 CU/mL) fully activated platelets. When platelets were treated with 0.2 CU/mL of plasmin, lowering the incubation temperature from 37 degrees C to 22 degrees C resulted in an increase in the expression of fibrinogen receptors, in platelet release and aggregation. Thromboxane A2 was not generated by plasmin treatment at either temperature. Ultrastructural studies showed that platelets responded to low-dose plasmin at 37 degrees C by forming pseudopods, centralizing granules without fibrinogen release, whereas at 22 degrees C the same dose of plasmin caused platelet degranulation with the appearance of alpha-granule fibrinogen within the lumen of the surface connected canalicular system. In addition, at 22 degrees C plasmin at doses insufficient to induce platelet aggregation potentiated platelet response to thrombin. Thus, we suggest that plasmin may initiate both activating and inhibitory processes within platelets and that the change of temperature could influence this balance. These results may be of clinical relevance, because the fibrinolytic system was found activated during cardiopulmonary bypass in which the temperature of patient's blood circulation was reduced. This temperature-dependent behavior is also an interesting model for a further study on platelet response to serine proteinases.


1982 ◽  
Vol 93 (3) ◽  
pp. 820-827 ◽  
Author(s):  
L G Tilney ◽  
S Inoué

Thyone sperm were induced to undergo the acrosomal reaction with a calcium ionophore A23187 in sea water containing 50 mM excess CaCl2, and the extension of the acrosomal process was recorded with high-resolution, differential interference contrast video microscopy at 60 fields/sec. The length of the acrosomal process was measured at 0.25-s intervals on nine sperm. When the data were plotted as (length)2 vs. time, the points fell exactly on a straight line except for the initial and very final stages of elongation. Cytochalasin B alters the rate of elongation of the acrosomal process in a dose-dependent way, inhibiting the elongation completely at high concentrations (20 micrograms/ml). However, no inhibition was observed unless excess Ca++ was added to sea water. The concentration of actin in the periacrosomal cup of the unreacted sperm is as high as 160 mg/ml; we calculate this concentration from the number and lengths of the actin filaments in a fully reacted sperm, and the volume of the periacrosomal cup in the unreacted sperm. These results are consistent with the hypothesis proposed earlier that monomers add to the ends of the actin filaments situated at the tip of the growing acrosomal process (the preferred end for monomer addition), and that the rate of elongation of the process is limited by diffusion of monomers from the sperm head (periacrosomal cup) to the tip of the elongating process. During the extension of the acrosomal process, a few blebs distributed along its lengths move out with the process. These blebs maintain a constant distance from the tip of the growing process. At maximum length, the straight acrosomal process slackens into a bow, and numerous new blebs appear. A few seconds later, the process suddenly straightens out again and sometimes actually contracts. The behavior of the blebs indicates that membrane is inserted at the base of the growing acrosomal process, and that membrane assembly and water uptake must be coupled to actin assembly during elongation. We discuss how the dynamic balance of forces seems to determine the shape of the growing acrosomal process, and how actin assembly may be controlled during the acrosomal reaction.


Author(s):  
R. W. Tucker ◽  
N. S. More ◽  
S. Jayaraman

The mechanisms by which polypeptide growth factors Induce DNA synthesis in cultured cells is not understood, but morphological changes Induced by growth factors have been used as clues to Intracellular messengers responsible for growth stimulation. One such morphological change has been the transient disappearance of the primary cilium, a “9 + 0” cilium formed by the perinuclear centriole in interphase cells. Since calcium ionophore A23187 also produced both mitogenesis and ciliary changes, microtubule depolymerization might explain ciliary disappearance monitored by indirect immunofluorescence with anti-tubulin antibody. However, complete resorption and subsequent reformation of the primary cilium occurs at mitosis, and might also account for ciliary disappearance induced by growth factors. To settle this issue, we investigated the ultrastructure of the primary cilium using serial thin-section electron microscopy of quiescent BALB/c 3T3 cells before and after stimulation with serum.


1982 ◽  
Vol 48 (01) ◽  
pp. 049-053 ◽  
Author(s):  
C G Fenn ◽  
J M Littleton

SummaryEthanol at physiologically tolerable concentrations inhibited platelet aggregation in vitro in a relatively specific way, which may be influenced by platelet membrane lipid composition. Aggregation to collagen, calcium ionophore A23187 and thrombin (low doses) were often markedly inhibited by ethanol, adrenaline and ADP responses were little affected, and aggregation to exogenous arachidonic acid was actually potentiated by ethanol. Aggregation to collagen, thrombin and A23187 was inhibited more by ethanol in platelets enriched with saturated fatty acids than in those enriched with unsaturated fats. Platelets enriched with cholesterol showed increased sensitivity to ADP, arachidonate and adrenaline but this increase in cholesterol content did not appear to influence the inhibition by ethanol of platelet responses. The results suggest that ethanol may inhibit aggregation by an effect on membrane fluidity and/or calcium mobilization resulting in decreased activity of a membrane-bound phospholipase.


1990 ◽  
Vol 68 (6) ◽  
pp. 671-676 ◽  
Author(s):  
William Gibb ◽  
Jean-Claude Lavoie

The human amnion may be an important source of prostaglandins involved in the onset of human labor and therefore it is important to define the factors that regulate their formation in this tissue. In the present study we demonstrate that glucocorticoids inhibit prostaglandin production by freshly isolated amnion cells. The inhibitory action of the glucocorticoids, however, changes to a stimulatory action when the cells are maintained in primary culture for a few days. For both inhibition and stimulation, concentrations of 10−8 M dexamethasone or greater were required to give significant effects, and estradiol and progesterone had no effect on the prostaglandin output of the cells. Epidermal growth factor (EGF), which has previously been found to stimulate prostaglandin output by confluent amnion cells, did not alter prostaglandin output of cells initially placed in culture. Furthermore, the stimulatory action of EGF and dexamethasone appeared additive. The calcium ionophore A23187 stimulated prostaglandin output in freshly isolated cells and accentuated the inhibitory effect of dexamethasone. These studies indicate that prostaglandin formation by human amnion during pregnancy could be regulated by glucocorticoids. These steroids are easily available to the amnion by way of cortisone conversion to Cortisol by the maternal decidua. The results also indicate that amnion is capable of responding to glucocorticoids in both a stimulatory and inhibitory fashion and whether one or both actions are of importance in vivo is a question that is as yet unresolved.Key words: prostaglandins, amnion, fetal membranes, glucocorticoids, labor, pregnancy.


Sign in / Sign up

Export Citation Format

Share Document