Wind Energy Potential in Nine Coastal Sites in Malaysia

2013 ◽  
Vol 1 (1) ◽  
pp. 10-15
Author(s):  
Kamaruzzaman Sopian ◽  
Tamer Khatib

 In this paper, the wind energy potential in Malaysia is examined by analyzing hourly wind speed data for nine coastal sites namely Bintulu, Kota Kinabalu, Kuala Terengganu, Kuching, Kudat, Mersing, Sandakan, Tawau and Pulau Langkawi. The monthly averages of wind speed and wind energy are calculated. Moreover, the wind speed distribution histogram is constructed for these sites. The results showed that the average wind speed for these sites is in the range of (1.8-2.9) m/s while the annual energy of the wind hitting a wind turbine with a 1 m2 swept area is in the range of (15.4-25.2) kWh/m2.annum. This paper provides a data bank for wind energy for Malaysia.

2013 ◽  
Vol 1 (1) ◽  
pp. 10-15
Author(s):  
Kamaruzzaman Sopian ◽  
Tamer Khatib

 In this paper, the wind energy potential in Malaysia is examined by analyzing hourly wind speed data for nine coastal sites namely Bintulu, Kota Kinabalu, Kuala Terengganu, Kuching, Kudat, Mersing, Sandakan, Tawau and Pulau Langkawi. The monthly averages of wind speed and wind energy are calculated. Moreover, the wind speed distribution histogram is constructed for these sites. The results showed that the average wind speed for these sites is in the range of (1.8-2.9) m/s while the annual energy of the wind hitting a wind turbine with a 1 m2 swept area is in the range of (15.4-25.2) kWh/m2.annum. This paper provides a data bank for wind energy for Malaysia.


Author(s):  
Siyavash Filom ◽  
Soheil Radfar ◽  
Roozbeh Panahi

Wind power output is highly dependent on the wind speed at the selected site, therefore wind-speed distribution modeling is the most important step in the assessment of wind energy potential. This study aims at accurate evaluation of onshore wind energy potential in seven coastal cities in the south of Iran. Six Probability Distribution Functions (PDFs) were examined over representative stations. It has been deduced that the Weibull function, which was the most used PDF in similar studies, was only applicable to one station. Here, Gamma offered the best fit for three stations and for the other ones, Generalized Extreme Value (GEV) performed better. Considering the ranking of six examined PDFs and the simplicity of Gamma, it was identified as the effective function in the southern coasts of Iran bearing in mind the geographic distribution of stations. Besides, six turbine power curve functions were contributed to investigate the capacity factor. That was very important, as using only one function could cause under- or over-estimation. Then, stations were classified based on the National Renewable Energy Laboratory system. Last but not least, examining a range of wind turbines enabled scholars to extend this study into the practice and prioritize development of stations considering budget limits.


Author(s):  
Thomas J. Wenning ◽  
J. Kelly Kissock

This paper describes a methodology for a preliminary assessment of a region’s wind energy potential. The methodology begins by discussing four primary considerations for site location: wind resources, wildlife corridors, proximity to transmission grids, and required land area. Algorithms to calculate wind energy production using both hourly and annual average wind speed are presented. The hourly data method adjusts for differences in height, air density and terrain effects between the measurement site and the proposed turbine site. The annual average wind data method adjusts for these factors, and uses the average annual wind speed to generate a Rayleigh distribution of wind speeds over the year. Wind turbine electricity generation is calculated using the wind speed data and the turbine power curve. The lifecycle cost of electricity is calculated from operating costs, purchase costs, a discount rate, and the project lifetime. A case study demonstrates the use of the methodology to investigate the potential for producing electricity from wind turbines in Southwest Ohio. This information is useful to utilities, power producers and municipalities as they look to incorporate renewable energy generation into their portfolios.


2017 ◽  
Vol 6 (1) ◽  
pp. 19-27
Author(s):  
Charles R Standridge ◽  
Daivd Zeitler ◽  
Aaron Clark ◽  
Tyson Spoolma ◽  
Erik Nordman ◽  
...  

A study was conducted to address the wind energy potential over Lake Michigan to support a commercial wind farm.  Lake Michigan is an inland sea in the upper mid-western United States.  A laser wind sensor mounted on a floating platform was located at the mid-lake plateau in 2012 and about 10.5 kilometers from the eastern shoreline near Muskegon Michigan in 2013.  Range gate heights for the laser wind sensor were centered at 75, 90, 105, 125, 150, and 175 meters.  Wind speed and direction were measured once each second and aggregated into 10 minute averages.  The two sample t-test and the paired-t method were used to perform the analysis.  Average wind speed stopped increasing between 105 m and 150 m depending on location.  Thus, the collected data is inconsistent with the idea that average wind speed increases with height. This result implies that measuring wind speed at wind turbine hub height is essential as opposed to using the wind energy power law to project the wind speed from lower heights.  Average speed at the mid-lake plateau is no more that 10% greater than at the location near Muskegon.  Thus, it may be possible to harvest much of the available wind energy at a lower height and closer to the shoreline than previously thought.  At both locations, the predominate wind direction is from the south-southwest.  The ability of the laser wind sensor to measure wind speed appears to be affected by a lack of particulate matter at greater heights.Article History: Received June 15th 2016; Received in revised form January 16th 2017; Accepted February 2nd 2017 Available onlineHow to Cite This Article: Standridge, C., Zeitler, D., Clark, A., Spoelma, T., Nordman, E., Boezaart, T.A., Edmonson, J.,  Howe, G., Meadows, G., Cotel, A. and Marsik, F. (2017) Lake Michigan Wind Assessment Analysis, 2012 and 2013. Int. Journal of Renewable Energy Development, 6(1), 19-27.http://dx.doi.org/10.14710/ijred.6.1.19-27


2014 ◽  
Vol 18 (5) ◽  
pp. 559-564 ◽  
Author(s):  
Vanessa de F. Grah ◽  
Isaac de M. Ponciano ◽  
Tarlei A. Botrel

Wind power has gained space in Brazil's energy matrix, being a clean source and inexhaustible. Therefore, it becomes important to characterize the wind potential of a given location, for future applications. The main objective of the present study was to estimate the wind energy potential in Piracicaba, SP, Brazil. The wind speed data were collected by an anemometer installed at the Meteorological Station Luiz de Queiroz College of Agriculture, Piracicaba-SP. The wind speed variability was represented by the Weibull frequency distribution, a probability density function of two parameters (k and c). The parameters k and c were used to correlate the Gamma function with the annual average wind speed, the variance and power mean density. A wind profile was made to evaluate the behavior of historical average speeds at higher altitudes measured by anemometer, to estimate the gain in power density. The values of k for all heights were close to 1 which corresponds to a wind regime highly variable, and c values were also low representing a low average speed of the location. The location was characterized as being unfavorable for the application of wind turbines for power generation.


Author(s):  
Hamed H Pourasl ◽  
Vahid M Khojastehnezhad

The use of renewable energy as a future energy source is attracting considerable research interest globally. In particular, there is a significant growth in wind energy utilization during the last few years. This present study through a detailed and systematic literature survey assesses the wind energy potential of Kazakhstan for the first time. Using the Weibull distribution function and hourly wind speed data, the annual power and energy density of the sites are calculated. For the 50 sites considered in this study and at a height of 10 m above the ground, the annual average wind speed, the power density, and energy production of Kazakhstan range from 0.94–5.15 m/s, 4.50–169.34 W/m2 and 39.56–1502.50 kWh/m2/yr, respectively. It was found that Fort Sevcenko, Atbasar, and Akmola are the three best locations for wind turbine installation with wind power densities of 169.34, 135.30, and 111.51 W/m2, respectively. Fort Sevcenko demonstrates the highest potential for wind energy harvesting with an energy density of 1483.46 kWh/m2/yr. For the 15 commercial wind turbines, it was observed that the annual energy production of the selected turbines ranges between 3.8 GWh/yr in Petropavlovsk to 15.4 GWh/yr in Fort Sevcenko among the top six locations. The lowest and highest capacity factors correspond to the same sites with the values of 29.21% and 58.66%, respectively. Overall, it is the intention of this study to constitute a database for the users and developers of wind power in Kazakhstan.


Author(s):  
Yusuf Alper Kaplan

In this study, the compatibility of the real wind energy potential to the estimated wind energy potential by Weibull Distribution Function (WDF) of a region with low average wind speed potential was examined. The main purpose of this study is to examine the performance of six different methods used to find the coefficients of the WDF and to determine the best performing method for selected region. In this study seven-year hourly wind speed data obtained from the general directorate of meteorology of this region was used. The root mean square error (RMSE) statistical indicator was used to compare the efficiency of all used methods. Another main purpose of this study is to observe the how the performance of the used methods changes over the years. The obtained results showed that the performances of the used methods showed slight changes over the years, but when evaluated in general, it was observed that all method showed acceptable performance. Based on the obtained results, when the seven-year data is evaluated in this selected region, it can be said that the MM method shows the best performance.


Sign in / Sign up

Export Citation Format

Share Document