Improvement in the Reliability of Bypass Diode at Photovoltaic Modules Through an Intelligent Cooling System

2021 ◽  
Vol 70 (12) ◽  
pp. 1870-1878
Author(s):  
Jaehwan Ko ◽  
Chungil Kim ◽  
Chung-Geun Lee ◽  
Deukgwang Lee ◽  
Myeong-Geun Ko ◽  
...  
2017 ◽  
Vol 7 (5) ◽  
pp. 1980-1986
Author(s):  
A. Q. Jakhrani ◽  
A. R. Jatoi ◽  
S. H. Jakhrani

The purpose of this study is to fabricate and analyze an active cooling system for reducing photovoltaic (PV) module temperature and increasing its efficiency. An active cooling system was devised to cool the PV module. Two modules of same specifications were used for this study. One module was cooled, and other was left un-cooled for performance comparison. Solar radiations, wind speed, ambient temperature and temperatures at different points of the fabricated system were measured. The modules were mounted on a frame facing true south at the inclination of the latitude of the location. The measurements were taken during daytime with one hour intervals for two weeks. The temperatures at various points on cooled and un-cooled photovoltaic modules were noted using two different flow rates with 1 lit/min and 2 lit/min. It was discovered that the efficiency of PV module was enhanced from 6% to 7% during study period. The flow rate of 1lit/min was found more feasible for heat extraction as compared to the flow rate of 2lit/min. The wind speed was found to be more helpful for heat extraction from the modules as compared to other climatic parameters.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2416 ◽  
Author(s):  
Woo Shin ◽  
Suk Ko ◽  
Hyung Song ◽  
Young Ju ◽  
Hye Hwang ◽  
...  

Bypass diodes have been widely utilized in crystalline silicon (c-Si) photovoltaic (PV) modules to maximize the output of a PV module array under partially shaded conditions. A Schottky diode is used as the bypass diode in c-Si PV modules due to its low operating voltage. In this work, we systematically investigated the origin of bypass diode faults in c-Si PV modules operated outdoors. The temperature of the inner junction box where the bypass diode is installed increases as the ambient temperature increases. Its temperature rises to over 70 °C on sunny days in summer. As the temperature of the junction box increases from 25 to 70 °C, the leakage current increases up to 35 times under a reverse voltage of 15 V. As a result of the high leakage current of the bypass diode at high temperature, melt down of the junction barrier between the metal and semiconductor has been observed in damaged diodes collected from abnormally functioning PV modules. Thus, it is believed that the constant leakage current applied to the junction caused the melting of the junction, thereby resulting in a failure of both the bypass diode and the c-Si PV module.


Sign in / Sign up

Export Citation Format

Share Document