scholarly journals Analysis and Fabrication of an Active Cooling System for Reducing Photovoltaic Module Temperature

2017 ◽  
Vol 7 (5) ◽  
pp. 1980-1986
Author(s):  
A. Q. Jakhrani ◽  
A. R. Jatoi ◽  
S. H. Jakhrani

The purpose of this study is to fabricate and analyze an active cooling system for reducing photovoltaic (PV) module temperature and increasing its efficiency. An active cooling system was devised to cool the PV module. Two modules of same specifications were used for this study. One module was cooled, and other was left un-cooled for performance comparison. Solar radiations, wind speed, ambient temperature and temperatures at different points of the fabricated system were measured. The modules were mounted on a frame facing true south at the inclination of the latitude of the location. The measurements were taken during daytime with one hour intervals for two weeks. The temperatures at various points on cooled and un-cooled photovoltaic modules were noted using two different flow rates with 1 lit/min and 2 lit/min. It was discovered that the efficiency of PV module was enhanced from 6% to 7% during study period. The flow rate of 1lit/min was found more feasible for heat extraction as compared to the flow rate of 2lit/min. The wind speed was found to be more helpful for heat extraction from the modules as compared to other climatic parameters.

2014 ◽  
Vol 550 ◽  
pp. 137-143 ◽  
Author(s):  
S. Narendiran ◽  
Sarat Kumar Sahoo

The paper discuss about the modelling and electrical characteristics of photovoltaic cell and its array type of construction in matlab-simulink environment at different insolation levels. The photovoltaic module is modelled using the diode electrical characteristic equation. The photovoltaic cell is analysed by voltage input and current input modules, The voltage and current input photovoltaic modules are simulated with different insolation values by varying the construction of PV modules. The results conclude that the current input PV module is well suited for applications were it shares same current when connected in series and voltage input PV module, where it shares same voltage when connected in parallel.


Author(s):  
BHASKAR B. GARDAS ◽  
M.V TENDOLKAR

Photovoltaic solar cell generates electricity by receiving solar irradiance. The temperature of photovoltaic modules increases when it absorbs solar radiation, causing a decrease in efficiency. This undesirable effect can be partially avoided by applying a heat recovery unit with fluid circulation with the photovoltaic module. Such unit is called photovoltaic/thermal collector (PV/T) or hybrid (PV/T). The objective of the present work is to design a system for cooling the solar cell in order to increase its electrical efficiency and also to extract the heat energy. A hybrid solar system which generates both electricity and heat energy simultaneously is studied. This hybrid system consists of PV cells attached to an absorber plate with fins attached at the other side of the absorber surface. Simulation model for single pass, single duct solar collector with fins is prepared and performance curves are obtained. Performance with seven different gases analysed for maximum heat transfer, minimum mass flow rate & minimum number of fins. Hydrogen is found to be the most suitable option with the present. For hydrogen, the system requires a mass flow rate of 0.00275 kg/s, which is the least amongst all. Theoretical number of fins required in this case is found out to be 3.46.


2016 ◽  
Vol 27 (1) ◽  
pp. 28 ◽  
Author(s):  
N. Marc-Alain Mutombo ◽  
Freddie Inambao ◽  
Glen Bright

The conversion of solar irradiance into electricity by a photovoltaic module (PV) is 6– 7% of the incoming energy from the sun depending on the type of technology and the environmental parameters. More than 80% of incoming energy from the sun is reflected or absorbed by the solar module. The fraction of energy absorbed increases with solar cell temperature and the cells’ efficiency drops as a consequence. The efficiency of a PV module is improved by combining a PV module and a thermal collector in one unit, resulting in a hybrid photovoltaic and thermal collector (PV/T). The purpose of this paper is to present the behavior a thermosyphon hybrid PV/T when exposed to variations of environmental parameters and to demonstrate the advantage of cooling photovoltaic modules with water using a rectangular channel profile for the thermal collector. A single glazed flat-box absorber PV/T module was designed, its behavior for different environmental parameters tested, the numerical model developed, and the simulation for particular days for Durban weather run. The simulation result showed that the overall efficiency of the PV/T module was 38.7% against 14.6% for a standard PV module while the water temperature in the storage tank reached 37.1 °C. This is a great encouragement to the marketing of the PV/T technology in South Africa particularly during summer, and specifically in areas where the average annual solar irradiance is more than 4.70 kWh/m²/day.


2021 ◽  
Vol 945 (1) ◽  
pp. 012016
Author(s):  
Muhammad Arif bin Azahari ◽  
Chua Yaw Long ◽  
Koh Yit Yan

Abstract This paper analyses the difference in terms of performance of passive cooling systems for photovoltaic (PV) modules. The objective of this paper is to identify which passive cooling systems offers the best results in reducing the operating temperature and improving the generation of output power. The performance of photovoltaic (PV) module will gradually decrease as the operating temperature increases. The energy from the sun’s photons are not enough to knock out the electrons from the atom to generate more electricity. That being the case, two passive cooling systems is developed which is the cotton wick structures with water and aluminium fins were attached to the back side of the photovoltaic (PV) module. The cotton wick structures with water utilises the capillary action of the water to extract excess heat from the module while the aluminium fins act as a heat sink that can remove heat from module to the adjacent air. Results showed that the cooling systems managed to enhance the output power by an average of 3.94% for the module with cotton wick structures with water while an average of 2.67% increment for the module under aluminium fin mounted as the cooling system.


Solar photovoltaic-thermal (PVT) is an integrated system that produces both electrical and thermal energy simultaneously consist of PV module with heat extracting media for example water or air. The performance of the photovoltaic (PV) module depends upon the operating temperature of the PV module. The problem of non-uniform cooling of PV module can be solved by controlling the operating temperature of PV module systematically therefore, an automatic cooling system using Arduino integrated with PV module has been proposed. A theoretical model in term of heat transfer process analysis and simulation was developed to predict overall thermal-electrical conversion performances of Photovoltaic-Thermal (PVT) water system. The experimental validation of the used thermal and electrical model has been carried out by measured data. The result shows there is a good agreement between experimental and simulated results. This paper presents the electrical and thermal performance evaluation of Photovoltaic Module Integrated with Automatic Cooling System Using Arduino and comparing its performance with conventional solar PV system.


2012 ◽  
Vol 90 (1) ◽  
pp. 309-315 ◽  
Author(s):  
H.G. Teo ◽  
P.S. Lee ◽  
M.N.A. Hawlader

2017 ◽  
Vol 11 (11) ◽  
pp. 66
Author(s):  
Abdalla, Musa ◽  
Abu Quba, Hanan

Harvested Power from two axes tracking Photovoltaic modules is analyzed and investigated for the objective of enhancing its reduced efficiency in hot to moderate climates. A novel proposed natural cooling of the modules that depends on optimizing the PV different dynamical models is presented. The optimized PV orientation angles for the tracking system revealed that exact normality of the sun rays over the PV module may not be the best setup! The wind speed and direction over the PV impacts the collector’s temperature and consequently the PV efficiency. Finally, the work was verified and validated using real collected data from a weather station in Jordan.


Sign in / Sign up

Export Citation Format

Share Document