scholarly journals Effects of pretreatment on the cut flowers quarantined by EB radiation

2021 ◽  
Vol 7 (1) ◽  
pp. 49-58
Author(s):  
Thi Ly Nguyen ◽  
Thi The Doan ◽  
Kim Lang Vo Thi ◽  
Van Chung Cao

Fresh cut flowers including yellow and white chrysanthemum (chrysanthemum sp) and red carnation (Dianthus caryophyllus L) were electron beam irradiated as quarantine treatment. The results showed that the irradiated flowers could meet the phytosanitary requirements in the international trading. In this study, the cut flowers were pretreated with the commercial preservative and sugar solutions in order to increase their radio-tolerance and expand their vase-life. The pretreatment has also reduced the weight loss, browning rate of leaves, and brightness of the irradiated flowers. The results revealed that the commercial quality of the irradiated cut flowers pretreated with 2% glucose solution 2 hours, then 0.024% silver thiosulphate (STS) solution for further 2 hours was remained after storage at 4-6oC. Pre-treatment with 2% glucose and 0.024% STS before irradiation at 400 Gy and 600 Gy was chosen as the best way for improving the raditain tolerance of the cut flowers. The vase-lifes of the irradiated cut flowers are 6 days for yellow chrysanthemum; 8 days for white chrysanthemum and 8-10 days for red carnation similar to non-irradition ones.

HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 823A-823
Author(s):  
Su-Jeong Kim* ◽  
Chun-Woo Nam ◽  
Dong-Lim Yoo ◽  
Seung-Yeol Ryu ◽  
Ki-Sun Kim

Iris hollandica `Blue Magic' was treated with deionazed water as a control, 3% sucrose (Suc), 3% sucrose plus 0.4 mm silver thiosulphate (Suc+STS), 3% sucrose plus 200 mg·L-1 8-hydroxyquinoline sulphate (Suc+HQS) and 3% sucrose plus 100 mg·L-1 benzyl amino-purine (Suc+BA) for 4hrs and then transferred to tap water. The vase life treated with Suc+BA was extended 4 days longer than that of control. The treatment Suc+STS or Suc+HQS did not improve vase life. The amounts of water uptake and transpiration by all treatments decreased after harvest, but those values were higher in cut iris treated with Suc+BA than in those with control. Cut flowers treated with by Suc+BA markedly improved water balance, comparing with control which was quickly changed to minus value. Anthocyanin content in petals of cut flower treated with Suc+BA was 3.5 fold higher than that of control. The treatment by Suc+BA delayed discoloration in petals and senescence of cut Iris. Peroxidase (POD) activities of all treatments were reached maximum at 4th day after treatment and decreased thereafter. POD activity was highest when the cut iris was treated with Suc+BA. These results show that the use of Suc+BA is most effective treatment for improving the vase life and quality of cut Iris flowers.


2003 ◽  
Vol 9 (2) ◽  
Author(s):  
F. A. S. Hassan ◽  
T. Tar ◽  
Zs. Dorogi

In order to increase the vase life as well as quality of leaves of goldenrod (Solidago canadesis), the effect of 8-hydroxyquinoline sulphate (8-HQS), silver thiosulphate (STS) and l-methylcyclopropene (l-MCP) were investigated. 8-HQS was used as a continuous treatment at 400 ppm with or without sucrose at 50 g/l. The treatment of STS was used by putting the flower bases at 0.4 mM for 6h with or without sucrose at 50 g/l. l -MCP was used at 0.5 g/m3 for 6h dry or in water. Except the treatment of l -MCP in water, the chemical treatments, which were used, led to the increase vase of life of leaves as well as to the inflorescence of cut solidago spikes compared to the control. The best treatment in this concern was 8-HQS at 400 ppm without sucrose, which resulted in longest vase life of leaves as well as inflorescences and lowest percent loss of fresh weight of initial.


2004 ◽  
Vol 52 (2) ◽  
pp. 125-132 ◽  
Author(s):  
F. Hassan ◽  
G. Schmidt

Cut flowers of Dianthus caryophyllus L. cv. Asso were treated with 8-hydroxyquinoline sulphate (8-HQS) at 200 and 400 ppm with or without sucrose at 50 g l-1, silver thiosulphate (STS) at 0.2 and 0.4 mM with or without sucrose at 50 g l-1,and 1-methylcyclopropene (1-MCP) at 0.3, 0.5 and 0.7 g m-3 for 6 h to study the effect of these chemicals on post-harvest quality. 8-HQS treatments increased the vase life and the percentage loss of initial fresh weight compared to the control. In addition, the vase life was longer when sucrose was applied in combination with 8-HQS. The best treatment involved 400 ppm 8-HQS + 50 g l-1 sucrose. All the concentrations of STS prolonged the vase life and fresh mass compared to the control. The best treatment was STS at 0.4 mM with or without sucrose. All levels of 1-MCP prolonged the vase life and increased the fresh weight in comparison with the control. The best treatment in this respect was 1-MCP at 0.5 g m-3 for 6 h. The chlorophyll content (chl a and chl b) in the leaves was higher than the control in the best treatment of each chemical.


2004 ◽  
Vol 10 (4) ◽  
Author(s):  
F. Hassan ◽  
G. Schmidt ◽  
Zs. Dorogi

In order to improve the post production quality of cut flowers of Rosa hybrida L. cv. Baroness, the effect of 8-hydroxyquinoline sulfate (8-HQS), silver thiosulfate (STS) and 1-methylcyclopropene ( I-MCP) were investigated. 8-HQS was used at 200 and 400 ppm with or without sucrose at 50 g LI. STS was used at 0.2, and 0.4 mM with or without sucrose at 50 g 1-I. l-MCP was used at 0.3, 0.5 and 0.7 g in-3 for 6h. The postproduction quality was improved as a result of using any chemical treatment comparing with untreated control. All the treatments of 8-HQS increased the vase life and minimized the percentage of weight loss of rose cut flowers compared to the control. The vase life was lorger when 8-HQS was combined with sucrose. The best treatment of 8-HQS was 400 ppm 8-HQS + 50 g 1-1 sucrose. STS treatment led to prolong the vase life and minimized the percentage of weight loss compared to the control. In addition, the effect was better when sucrose was added to STS. The treatment of STS at 0.4 mM + 50 g 1-1 sucrose was the best one. l -MCP treatment prolonged the vase life and lowered the percentage of weight loss at any level compared with untreated control. The best treatment in this concern was l -MCP at 0.5 g m-3 for 6h. The chlorophyll content (chl.a and chid)) of the leaves for the best treatment of each chemical was higher than the control. The treatment of STS at 0.4 mM + 50 g 1-1 sucrose gave the best results in this respect.


2008 ◽  
Vol 14 (4) ◽  
Author(s):  
O. Terék ◽  
F. A. S. Hassan ◽  
E. Jámbor-Benczúr ◽  
Á. Máthé

Cut flowers of Dianthus caryophyllus L. cv. GIOKO were treated with different concentrations of sucrose and in combination with 1­methylcyclopropene (1-MCP) to compare the effect of these treatments with floral preservative (`Spring') on the longevity of flowers. Distilled water was used for preparing all solutions. The control flowers were held in distilled water. Clorox at 2 mL- I was added to all treatments containing sucrose and it was also applied as a separate treatment. The vase life of cut carnations was significantly prolonged due to the use of chemical treatments, as compared to the untreated control. The longest vase life (18.33 days) was obtained by using 1-MCP 0.5 g m-3 for 6 h treatment. All concentrations of sucrose had a positive effect on flower diameter. The best treatment in this respect was 1 -MCP with 30 gL-I sucrose. 1-MCP treatment significantly increased the chlorophyll content, as compared to the control or the "Spring" treatment. The highest values in this respect were obtained by 1 -MCP treatment alone or with the lowest level of sucrose. The effect of these treatments on the pH of solutions is discussed.


2004 ◽  
Vol 10 (1) ◽  
Author(s):  
F. Hassan ◽  
G. Schmidt

Cut flowers of Chrysanthemum morifolium RAM cv. Suny Reagan were treated with different concentrations of 8- hydroxyquinoline sulfate (8-HQS), silver thiosulfate (STS) and 1-methylcyclopropene (1-MCP) in order to improve the post production quality. 8-HQS was used at 200 and 400 ppm with or without sucrose at 50 O. STS was used at 0.2, and 0.4 mM with or without sucrose at 50 g/1 1-MCP was used at 0.3, 0.5 and 0.7 g/m3 for 6h. All the treatments of 8-HQS prolonged the vase life and minimized the percentage of weight loss of chrysanthemum cut flowers compared to the control. The vase life was larger when sucrose not combined with 8-HQS. The best treatment of 8-1-IQS was 400 ppm 8-HQS without sucrose. STS treatment led to prolong the vase life and minimized the percentage of weight loss comparing to the control. In addition, the effect was better when sucroseas was added to STS. The treatment of STS at 0.4 mM + 50 g/I sucrose was the best one. 1-MCP treatment increased the vase life and lowered the percentage of weight loss at any level comparing with untreated control. The best treatment in this concern was 1-MCP at 0.5 g/m3 for 6h. The chlorophyll content (chl.a and chl.b) of the leaves for the best treatment of each chemical was higher than that of the control. The treatment of 1-MCP at 0.5 g/m3 6h gave the best results in this respect.


2014 ◽  
Vol 22 (2) ◽  
pp. 19-30 ◽  
Author(s):  
Fatemeh Begri ◽  
Ebrahim Hadavi ◽  
Amrollah Nabigol

AbstractIn this study, succinic acid (0, 1 and 2 mM), malic acid (0, 1 and 2 mM), ethanol (0, 2 and 4% v/v), and their mixtures were applied as preservative solutions for cut flowers of spread carnation cv. ‘White Natila’ and their effect on the longevity, the amount of absorbed solution, malondialdehyde and chlorophyll content, cell membrane stability, fresh, and dry weight and on a visual quality was determined. A similarity in the effect of malic acid and succinic acid on dry weight and fresh weight loss were found. Ethanol positively affected most of the studied traits, including the vase life and fresh weight loss. The preservative solution containing 1 mM of malic acid and 4% ethanol resulted in the longest average vase life - 11.1 days compared to 8.9 days in the control. Malic acid showed a significant positive synergism with ethanol that makes it reasonable to combine them in preservative solutions intended to extend the vase life of cut spray carnation.


2020 ◽  
Vol 23 (4) ◽  
pp. 1818-1827
Author(s):  
Tu Thi Anh Le

Introduction: The procedure to synthesize silver nanoparticles (SNPs) from Prunus cerasoides leaf extract and their effect on vase life and flower quality of cut carnation were investigated. Methods: SNPs were bio-synthesized from Prunus cerasoides leaf extract and characterized by using UV-Vis technique, TEM, and SEM images. The postharvest responses of carnation cut flowers to the biosynthesis SNPs were evaluated through vase life, relative fresh weight, vase solution uptake, flower diameter of cut carnation. Results: SNPs were synthesized under optimum conditions, including using the extract of leaf heating at 60 oC in 30 min, 4 mM of silver nitrate, pH of 11, and 180 min of reaction time. SNPs exhibited antimicrobial activity and then alleviated the bacterial development in the preservative solution. All treatments with SNPs had improved the vase life and quality of cut carnation compared to the control. A vase solution containing 2% sucrose enhanced the carnation cut flowers. Conclusions: The preservative solution containing 25 ppm SNPs and 2% sucrose showed the best effect. SNPs could be used as a promising antibacterial agent applied in the preservative solution for cut carnation flowers.


Sign in / Sign up

Export Citation Format

Share Document