scholarly journals Vapor Transport and Deposition of Cu-Sn-Co-Ag Alloys in Vesicles in Mafic Volcanic Rocks

2020 ◽  
Vol 115 (2) ◽  
pp. 279-301
Author(s):  
Elizabeth A.O. Hunter ◽  
Jacob R. Hunter ◽  
Zoltan Zajacz ◽  
Jeffrey D. Keith ◽  
Nichelle L. Hann ◽  
...  

Abstract Metallic sublimates coated by sulfides and chlorides line the vesicle walls of mafic volcanic lava and bombs from Kīlauea, Vesuvius, Etna, and Stromboli. The metallic sublimates were morphologically and compositionally similar among the volcanoes. The highest concentrations of S and Cl occurred on the surface of the sublimates, while internally they had less than 1 wt % S and Cl in most cases, leading us to classify them as alloys. The major components of the alloys were Cu, Sn, Co, and Ag based on electron microprobe analyses and environmental scanning electron microscope element maps. Alloy element maps showed a covariance of Cu-Sn, while Co and Ag concentrations varied independently. Laser ablation-inductively coupled plasma-mass spectrometry analysis of matrix glass and melt inclusions in bombs from Stromboli showed appreciable amounts of Cu, Co, and Sn. We propose a model for the origin of the metallic grains, which involves syneruptive and posteruptive magma degassing and subsequent cooling of the basalt vesicles. During syneruptive vapor phase exsolution, volatile metals (Cu, Co, and Sn) partition into the vapor along with their ligands, S and Cl. The apparent oxygen fugacity (fO2) in these vapor bubbles is low because of the relative enrichment of the exsolved gas phase in H2 relative to H2O in silicate melts, due to the much higher diffusivity of the former in silicate melts. The high fH2 and low fO2 induces the precipitation of metal alloys from the vapor phase. Subsequently, the reducing environment in the vesicle dissipates as the cooling vapor oxidizes and as H2 diffuses away. Then, metal-rich sulfides (and chlorides) condense onto the outer surfaces of the metal alloy grains either due to a decrease in temperature or an increase in fO2. These alloys provide important insights into the partitioning of metals into a magmatic volatile phase at low pressure and high temperature.

2020 ◽  
Vol 115 (8) ◽  
pp. 1777-1798 ◽  
Author(s):  
Stephen J. Barnes ◽  
Valentina Taranovic ◽  
Louise E. Schoneveld ◽  
Eduardo T. Mansur ◽  
Margaux Le Vaillant ◽  
...  

Abstract Pentlandite is the dominant Ni-hosting ore mineral in most magmatic sulfide deposits and has conventionally been interpreted as being entirely generated by solid-state exsolution from the high-temperature monosulfide solid solution (MSS) (Fe,Ni)1–xS. This process gives rise to the development of loops of pentlandite surrounding pyrrhotite grains. Recently it has been recognized that not all pentlandite forms by exsolution. Some may form as the result of peritectic reaction between early formed MSS and residual Ni-Cu–rich sulfide liquid during differentiation of the sulfide melt, such that at least some loop textures may be genuinely magmatic in origin. Testing this hypothesis involved microbeam X-ray fluorescence mapping to image pentlandite-pyrrhotite-chalcopyrite intergrowths from a range of different deposits. These deposits exemplify slowly cooled magmatic environments (Nova, Western Australia; Sudbury, Canada), globular ores from shallow-level intrusions (Norilsk, Siberia), extrusive komatiite-hosted ores from low and high metamorphic-grade terranes, and a number of other deposits. Our approach was complemented by laser ablation-inductively coupled plasma-mass spectrometry analysis of palladium in varying textural types of pentlandite within these deposits. Pentlandite forming coarse granular aggregates, together with loop-textured pentlandite where chalcopyrite also forms part of the loop framework, consistently has the highest Pd content compared with pentlandite clearly exsolved as lamellae from MSS or pyrrhotite. This is consistent with much of granular and loop pentlandite being formed by peritectic reaction between Pd-rich residual sulfide liquid and early crystallized MSS, rather than forming entirely by subsolidus grain boundary exsolution from MSS, as has hitherto been assumed. The wide range of Pd contents in pentlandite in individual samples reflects a continuum of processes between peritectic reaction and grain boundary exsolution. Textures in metamorphically recrystallized ores are distinctly different from loop-textured ores, implying that loop textures cannot be regenerated (except in special circumstances) by metamorphic recrystallization of original magmatic-textured ores. The presence of loop textures can therefore be taken as evidence of a lack of penetrative deformation and remobilization at submagmatic temperatures, a conclusion of particular significance to the interpretation of the Nova deposit as having formed synchronously with the peak of regional deformation at temperatures within the sulfide melting range.


2013 ◽  
Vol 64 (3) ◽  
pp. 171-180b ◽  
Author(s):  
Karel Breiter ◽  
Nina Gardenová ◽  
Viktor Kanický ◽  
Tomáš Vaculovič

Abstract Contents of Ga and Ge in granites, rhyolites, orthogneisses and greisens of different geochemical types from the Bohemian Massif were studied using inductively coupled plasma mass spectrometry analysis of typical whole-rock samples. The contents of both elements generally increase during fractionation of granitic melts: Ga from 16 to 77 ppm and Ge from 1 to 5 ppm. The differences in Ge and Ga contents between strongly peraluminous (S-type) and slightly peraluminous (A-type) granites were negligible. The elemental ratios of Si/1000Ge and Al/1000Ga significantly decreased during magmatic fraction: from ca. 320 to 62 and from 4.6 to 1.2, respectively. During greisenization, Ge is enriched and hosted in newly formed hydrothermal topaz, while Ga is dispersed into fluid. The graph Al/Ga vs. Y/Ho seems to be useful tool for geochemical interpretation of highly evolved granitoids.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Stéphane L. Benoit ◽  
Robert J. Maier

AbstractOne of the hallmarks of the most common neurodegenerative disease, Alzheimer’s disease (AD), is the extracellular deposition and aggregation of Amyloid Beta (Aβ)-peptides in the brain. Previous studies have shown that select metal ions, most specifically copper (Cu) and zinc (Zn) ions, have a synergistic effect on the aggregation of Aβ-peptides. In the present study, inductively coupled plasma mass spectrometry (ICP-MS) was used to determine the metal content of a commercial recombinant human Aβ40 peptide. Cu and Zn were among the metals detected; unexpectedly, nickel (Ni) was one of the most abundant elements. Using a fluorescence-based assay, we found that Aβ40 peptide in vitro aggregation was enhanced by addition of Zn2+ and Ni2+, and Ni2+-induced aggregation was facilitated by acidic conditions. Nickel binding to Aβ40 peptide was confirmed by isothermal titration calorimetry. Addition of the Ni-specific chelator dimethylglyoxime (DMG) inhibited Aβ40 aggregation in absence of added metal, as well as in presence of Cu2+ and Ni2+, but not in presence of Zn2+. Finally, mass spectrometry analysis revealed that DMG can coordinate Cu or Ni, but not Fe, Se or Zn. Taken together, our results indicate that Ni2+ ions enhance, whereas nickel chelation inhibits, Aβ peptide in vitro aggregation. Hence, DMG-mediated Ni-chelation constitutes a promising approach towards inhibiting or slowing down Aβ40 aggregation.


Sign in / Sign up

Export Citation Format

Share Document