scholarly journals A Test Device for Optimize PMU-Based Islanding Detection Technology

Islanding detection is a necessary function for grid connected distributed generators. Usually, islanding detection methods can be classified as two catalogues: remote detecting methods and local detecting methods. Most of them have limitation and defects when they are applied in photovoltaic power stations. Recently synchronous phasor measuring units (PMU) is proposed to be applied for islanding detecting. Although the islanding detection method is supposed to be applied for traditional bulk power systems, it is also suitable for renewable generation power plants. To do this islanding detection will be implemented on central management unit of photovoltaic power station instead of on grid-tied inverters as traditionally. In implementing, the criteria of this method and the threshold of algorithm are needed to be optimized. This paper develops a test device which can optimize PMU-based islanding detection technology to validate the proposed islanding detection method applying in PV station. Then using simulation to discuss how to set a reasonable threshold for the researched islanding detection method applied in PV stations. Finally the paper provides a platform for the algorithm optimization.

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Manop Yingram ◽  
Suttichai Premrudeepreechacharn

The mainly used local islanding detection methods may be classified as active and passive methods. Passive methods do not perturb the system but they have larger nondetection zones, whereas active methods have smaller nondetection zones but they perturb the system. In this paper, a new hybrid method is proposed to solve this problem. An over/undervoltage (passive method) has been used to initiate an undervoltage shift (active method), which changes the undervoltage shift of inverter, when the passive method cannot have a clear discrimination between islanding and other events in the system. Simulation results on MATLAB/SIMULINK show that over/undervoltage and undervoltage shifts of hybrid islanding detection method are very effective because they can determine anti-islanding condition very fast.ΔP/P>38.41% could determine anti-islanding condition within 0.04 s;ΔP/P<-24.39% could determine anti-islanding condition within 0.04 s;-24.39%≤ΔP/P≤ 38.41% could determine anti-islanding condition within 0.08 s. This method perturbed the system, only in the case of-24.39% ≤ΔP/P ≤38.41% at which the control system of inverter injected a signal of undervoltage shift as necessary to check if the occurrence condition was an islanding condition or not.


2019 ◽  
Vol 9 (13) ◽  
pp. 2771 ◽  
Author(s):  
Ping Zhou ◽  
Gongbo Zhou ◽  
Zhencai Zhu ◽  
Zhenzhi He ◽  
Xin Ding ◽  
...  

As an important load-bearing component, steel wire ropes (WRs) are widely used in complex systems such as mine hoists, cranes, ropeways, elevators, oil rigs, and cable-stayed bridges. Non-destructive damage detection for WRs is an important way to assess damage states to guarantee WR’s reliability and safety. With intelligent sensors, signal processing, and pattern recognition technology developing rapidly, this field has made great progress. However, there is a lack of a systematic review on technologies or methods introduced and employed, as well as research summaries and prospects in recent years. In order to bridge this gap, and to promote the development of non-destructive detection technology for WRs, we present an overview of non-destructive damage detection research of WRs and discuss the core issues on this topic in this paper. First, the WRs’ damage type is introduced, and its causes are explained. Then, we summarize several main non-destructive detection methods for WRs, including electromagnetic detection method, optical detection method, ultrasonic guided wave detection method, and acoustic emission detection method. Finally, a prospect is put forward. Based on the review of papers, we provide insight about the future of the non-destructive damage detection methods for steel WRs to a certain extent.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2474 ◽  
Author(s):  
Menghua Liu ◽  
Wei Zhao ◽  
Qing Wang ◽  
Songling Huang ◽  
Kunpeng Shi

One class of islanding detection methods, known as impedance measurement-based methods and voltage change monitoring-based methods, are implemented through injecting irregular currents into the network, for which reason they are defined in this paper as irregular current injection methods. This paper indicates that such methods may be affected by distributed generation (DG) unit cut-in events. Although the network impedance change can still be used as a judgment basis for islanding detection, the general impedance measurement scheme cannot separate island events from DG unit cut-in events in multi-DG operation. In view of this, this paper proposes a new islanding detection method based on an improved impedance measurement scheme, i.e., dynamic impedance measurement, which will not be affected by DG unit cut-in events and can further assist some other equipment in islanding detection. The simulations and experiments verify the stated advantages of the new islanding detection method.


2020 ◽  
Vol 14 (18) ◽  
pp. 3630-3640
Author(s):  
Jia Ke ◽  
Zhu Zhengxuan ◽  
Yang Zhe ◽  
Fang Yu ◽  
Bi Tianshu ◽  
...  

2015 ◽  
Vol 52 ◽  
pp. 788-795
Author(s):  
Furong Liu ◽  
Xianbing Chen ◽  
Donghua Zhang ◽  
Guorong Zhu ◽  
Wei Chen

Sign in / Sign up

Export Citation Format

Share Document