scholarly journals Geometric Optimization of a Gas Turbine Blade Cooling Passage using CFD

This work focuses on the rib-turbulated cooling which is a category of impingement cooling and aims at optimizing the geometry of rib-roughened cooling passage of a gas turbine blade. CFD analysis is carried out using Ansys/Fluent to solve the steady RANS equations. Computational domain consists of a long rectangular channel with the length of the channel being 9 times its height. Ratios of rib width, rib height and rib pitch to hydraulic diameter of the channel are taken as 0.1, 0.1 and 1.2, respectively. Numerical simulations are performed to analyze the performance of various rib shapes for Reynolds number, based upon the hydraulic diameter, in a range of 5000 to 50,000. Uniform heat flux of 800 W/m2 is applied to the ribbed wall. Incompressible air is used as the cooling fluid. Turbulent flow conditions are applied to the channel geometry with k-ω turbulence model. The effect of rib cross-section and rib pitch to rib width ratio on the heat transfer and friction factor is observed. The 2D CFD analysis revealed that the presence of ribs has significant effect on thermo-hydraulic performance of the cooling channel. Introducing square ribs in a smooth channel caused the Nusselt number to increase by two-folds. The highest value of Nusselt number was achieved by incorporating right-angle triangular ribs which caused the Nusselt number to increase by further 8%, as compared to the square ribs, and an increase in friction factor of 2.5%. The lowest value of friction factor was observed in semicircular ribs (2.95% less than the square ribs), however, the Nusselt number also decreased by 1.5%, as compared to square ribs. Decreasing rib pitch to rib width ratio increased both the Nusselt number and friction factor for all the cases. For square ribs, decreasing this ratio from 15 to 9 resulted in the rise of Nusselt number by 50% and increase in friction factor by 54%.

Author(s):  
Karthik Krishnaswamy ◽  
◽  
Srikanth Salyan ◽  

The performance of a gas turbine during the service life can be enhanced by cooling the turbine blades efficiently. The objective of this study is to achieve high thermohydraulic performance (THP) inside a cooling passage of a turbine blade having aspect ratio (AR) 1:5 by using discrete W and V-shaped ribs. Hydraulic diameter (Dh) of the cooling passage is 50 mm. Ribs are positioned facing downstream with angle-of-attack (α) of 30° and 45° for discrete W-ribs and discerte V-ribs respectively. The rib profiles with rib height to hydraulic diameter ratio (e/Dh) or blockage ratio 0.06 and pitch (P) 36 mm are tested for Reynolds number (Re) range 30000-75000. Analysis reveals that, area averaged Nusselt numbers of the rib profiles are comparable, with maximum difference of 6% at Re 30000, which is within the limits of uncertainty. Variation of local heat transfer coefficients along the stream exhibited a saw tooth profile, with discrete W-ribs exhibiting higher variations. Along spanwise direction, discrete V-ribs showed larger variations. Maximum variation in local heat transfer coefficients is estimated to be 25%. For experimented Re range, friction loss for discrete W-ribs is higher than discrete-V ribs. Rib profiles exhibited superior heat transfer capabilities. The best Nu/Nuo achieved for discrete Vribs is 3.4 and discrete W-ribs is 3.6. In view of superior heat transfer capabilities, ribs can be deployed in cooling passages near the leading edge, where the temperatures are very high. The best THPo achieved is 3.2 for discrete V-ribs and 3 for discrete W-ribs at Re 30000. The ribs can also enhance the power-toweight ratio as they can produce high thermohydraulic performances for low blockage ratios.


2019 ◽  
Vol 141 (7) ◽  
Author(s):  
Lei Luo ◽  
Zhiqi Zhao ◽  
Xiaoxu Kan ◽  
Dandan Qiu ◽  
Songtao Wang ◽  
...  

This paper numerically investigated the impact of the holes and their location on the flow and tip internal heat transfer in a U-bend channel (aspect ratio = 1:2), which is applicable to the cooling passage with dirt purge holes in the mid-chord region of a typical gas turbine blade. Six different tip ejection configurations are calculated at Reynolds numbers from 25,000 to 200,000. The detailed three-dimensional flow and heat transfer over the tip wall are presented, and the overall thermal performances are evaluated. The topological methodology, which is first applied to the flow analysis in an internal cooling passage of the blade, is used to explore the mechanisms of heat transfer enhancement on the tip wall. This study concludes that the production of the counter-rotating vortex pair in the bend region provides a strong shear force and then increases the local heat transfer. The side-mounted single hole and center-mounted double holes can further enhance tip heat transfer, which is attributed to the enhanced shear effect and disturbed low-energy fluid. The overall thermal performance of the optimum hole location is a factor of 1.13 higher than that of the smooth tip. However, if double holes are placed on the upstream of a tip wall, the tip surface cannot be well protected. The results of this study are useful for understanding the mechanism of heat transfer enhancement in a realistic gas turbine blade and for efficient designing of blade tips for engine service.


2018 ◽  
Vol 40 (8) ◽  
pp. 832-837
Author(s):  
H. Bharathkumar ◽  
J. Jensin Joshua ◽  
P. Booma Devi ◽  
D. Raja Joseph

Author(s):  
Naris Pattanaprates ◽  
Ekachai Juntasaro ◽  
Varangrat Juntasaro

Abstract The present work is aimed to investigate whether the modification to the bend geometry of a multipass internal cooling passage in a gas turbine blade can enhance heat transfer and reduce pressure drop. The two-pass channel and the four-pass channel are modified at the bend from the U shape to the bulb and bow shape. The first objective of the work is to investigate whether the modified design will still improve heat transfer with reduced pressure drop in a four-pass channel as in the case of a two-pass channel. It is found out that, unlike the two-pass channel, the heat transfer is not improved but the pressure drop is still reduced for the four-pass channel. The second objective is to investigate the rotating effect on heat transfer and pressure drop in the cases of two-pass and four-pass channels for both original and modified designs. It is found out that heat transfer is improved with reduced pressure drop for all cases. However, the modified design results in the less improvement on heat transfer and lower reduced pressure drop as the rotation number increases. It can be concluded from the present work that the modification can solve the problem of pressure drop without causing the degradation of heat transfer for all cases. The two-pass channel with modified bend results in the highest heat transfer and the lowest pressure drop for rotating cases.


2018 ◽  
Vol 22 (2) ◽  
pp. 963-972 ◽  
Author(s):  
Jitesh Rana ◽  
Anshuman Silori ◽  
Rajesh Maithani ◽  
Sunil Chamoli

A CFD analysis of a solar air heater has been carried out using V-shaped ribs as artificial roughness on the absorber plate. The relative roughness pitch, P/e = 6-12, Reynolds number of 3800-18000, relative roughness height, e/D = = 0.042, and angle of attack, ? = 30?-75?, have been selected as design variables of V-shaped rib for analysis. The ANSYS FLUENT 15.0 with renormalization group k-? turbulence model is selected for the analysis of computational domain of solar air heater. The enhancement of Nusselt number and friction factor with Reynolds number for different values of a relative roughness pitch are presented and discussed by CFD analysis. The effect of angle of attack and Reynolds number on enhancement of Nusselt number and friction factor is also presented. The optimum value of rib configuration based on constant pumping power requirement has been derived using thermohydraulic performance parameter and has been found maximum at angle of attack of 60? and P/e = 10.


Sign in / Sign up

Export Citation Format

Share Document