scholarly journals Iterative Channel Estimation for Nonbinary LDPC-Coded OFDM Signals

2011 ◽  
Vol 2011 ◽  
pp. 1-8
Author(s):  
Giacomo Bacci ◽  
Marco Della Maggiora ◽  
Marco Luise

This work deals with the issue of channel estimation in the context of non-binary LDPC-coded OFDM systems over doubly selective multipath channels. In particular, we show how to derive an iterative Wiener-filter-based estimation method using both time and frequency channel correlation and considering the particular characteristics of the channel code. The proposed algorithm can use either soft information or hard decisions fed back by the decoder to refine the channel estimation, so as to improve the system performance at the expense of an increased receiver complexity. Simulation results under typical working conditions are presented to compare the performance of the proposed method with respect to classical techniques.

2014 ◽  
Vol 989-994 ◽  
pp. 3759-3762 ◽  
Author(s):  
Gulomjon Sangirov ◽  
Yong Qing Fu ◽  
Ye Fang

An orthogonal frequency division multiplexing (OFDM) is one of the effective techniques used in wireless communications. In OFDM systems, channel impairments due to multipath dispersive wireless channels can cause deep fades in wireless channels. The OFDM receiver also requires an accurate and computationally efficient channel state information when coherent detection is involved. Therefore, it needs a good robust estimation method of the channel in wireless communication for OFDM systems. And one of these channel estimation methods is minimum mean square error (MMSE) channel estimation. MMSE channel estimation one most used method in OFDM systems. In this work we enhanced robustness of MMSE channel estimation by using it in base of quasi-cyclic low density parity check (QC-LDPC) coded OFDM system.


2010 ◽  
Vol E93-B (8) ◽  
pp. 2211-2214
Author(s):  
Bin SHENG ◽  
Pengcheng ZHU ◽  
Xiaohu YOU ◽  
Lan CHEN

2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Ruo-Nan Yang ◽  
Wei-Tao Zhang ◽  
Shun-Tian Lou

In order to track the changing channel in multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) systems, it is prior to estimate channel impulse response adaptively. In this paper, we proposed an adaptive blind channel estimation method based on parallel factor analysis (PARAFAC). We used an exponential window to weight the past observations; thus, the cost function can be constructed via a weighted least squares criterion. The minimization of the cost function is equivalent to the decomposition of third-order tensor which consists of the weighted OFDM data symbols. To reduce the computational load, we adopt a recursive singular value decomposition method for tensor decomposition; then, the channel parameters can be estimated adaptively. Simulation results validate the effectiveness of the proposed algorithm under diverse signalling conditions.


Symmetry ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 997 ◽  
Author(s):  
Zhang ◽  
Zhou ◽  
Wang

Orthogonal frequency division multiplexing (OFDM) systems have inherent symmetric properties, such as coding and decoding, constellation mapping and demapping, inverse fast Fourier transform (IFFT) and fast Fourier transform (FFT) operations corresponding to multi-carrier modulation and demodulation, and channel estimation is a necessary module to resist channel fading in the OFDM system. However, the noise in the channel will significantly affect the accuracy of channel estimation, which further affects the recovery quality of the final received signals. Therefore, this paper proposes an efficient noise suppression channel estimation method for OFDM systems based on adaptive weighted averaging. The basic idea of the proposed method is averaging the last few channel coefficients obtained from coarse estimation to suppress the noise effect, while the average frame number is adaptively adjusted by combining Doppler spread and signal-to-noise ratio (SNR) information. Meanwhile, to better combat the negative effect brought by Doppler spread and inter-carrier interference (ICI), the proposed method introduces a weighting factor to correct the weighted value of each frame in the averaging process. Simulation results show that the proposed channel estimation method is effective and provides better performance compared with other conventional channel estimation methods.


Sign in / Sign up

Export Citation Format

Share Document